ADDENDUM - 1- GS 105-317 - 2- GS 105-283 - 3- Uniform Standards of Professional Appraisal Practice Standard 6 Mass Appraisal, Development, Reporting - 4- Guide to Leasehold Improvements - 5- Real vs. Personal Property - 6- IAAO Standards on Mass Ratio Studies - 7- IAAO Standards on Ratio Studies - 8- Residential Real Estate Market Reports Davidson & Associates # Administration of Real and Personal Property Appraisal. # § 105-317. Appraisal of real property; adoption of schedules, standards, and rules. - (a) Whenever any real property is appraised it shall be the duty of the persons making appraisals: - (1) In determining the true value of land, to consider as to each tract, parcel, or lot separately listed at least its advantages and disadvantages as to location; zoning; quality of soil; waterpower; water privileges; dedication as a nature preserve; conservation or preservation agreements; mineral, quarry, or other valuable deposits; fertility; adaptability for agricultural, timber-producing, commercial, industrial, or other uses; past income; probable future income; and any other factors that may affect its value except growing crops of a seasonal or annual nature. - (2) In determining the true value of a building or other improvement, to consider at least its location; type of construction; age; replacement cost; cost; adaptability for residence, commercial, industrial, or other uses; past income; probable future income; and any other factors that may affect its value. - (3) To appraise partially completed buildings in accordance with the degree of completion on January 1. - (b) In preparation for each revaluation of real property required by G.S. 105-286, it shall be the duty of the assessor to see that: - (1) Uniform schedules of values, standards, and rules to be used in appraising real property at its true value and at its present-use value are prepared and are sufficiently detailed to enable those making appraisals to adhere to them in appraising real property. - (2) Repealed by Session Laws 1981, c. 678, s. 1. - (3) A separate property record be prepared for each tract, parcel, lot, or group of contiguous lots, which record shall show the information required for compliance with the provisions of G.S. 105-309 insofar as they deal with real property, as well as that required by this section. (The purpose of this subdivision is to require that individual property records be maintained in sufficient detail to enable property owners to ascertain the method, rules, and standards of value by which property is appraised.) - (4) The property characteristics considered in appraising each lot, parcel, tract, building, structure and improvement, in accordance with the schedules of values, standards, and rules, be accurately recorded on the appropriate property record. - (5) Upon the request of the owner, the board of equalization and review, or the board of county commissioners, any particular lot, parcel, tract, building, structure or improvement be actually visited and observed to verify the accuracy of property characteristics on record for that property. - (6) Each lot, parcel, tract, building, structure and improvement be separately appraised by a competent appraiser, either one appointed under the provisions of G.S. 105-296 or one employed under the provisions of G.S. 105-299. - (7) Notice is given in writing to the owner that he is entitled to have an actual visitation and observation of his property to verify the accuracy of property characteristics on record for that property. G.S. 105-317 Page 2 - (c) The values, standards, and rules required by subdivision (b)(1) shall be reviewed and approved by the board of county commissioners before January 1 of the year they are applied. The board of county commissioners may approve the schedules of values, standards, and rules to be used in appraising real property at its true value and at its present-use value either separately or simultaneously. Notice of the receipt and adoption by the board of county commissioners of either or both the true value and present-use value schedules, standards, and rules, and notice of a property owner's right to comment on and contest the schedules, standards, and rules shall be given as follows: - (1) The assessor shall submit the proposed schedules, standards, and rules to the board of county commissioners not less than 21 days before the meeting at which they will be considered by the board. On the same day that they are submitted to the board for its consideration, the assessor shall file a copy of the proposed schedules, standards, and rules in his office where they shall remain available for public inspection. - (2) Upon receipt of the proposed schedules, standards, and rules, the board of commissioners shall publish a statement in a newspaper having general circulation in the county stating: - a. That the proposed schedules, standards, and rules to be used in appraising real property in the county have been submitted to the board of county commissioners and are available for public inspection in the assessor's office; and - b. The time and place of a public hearing on the proposed schedules, standards, and rules that shall be held by the board of county commissioners at least seven days before adopting the final schedules, standards, and rules. - (3) When the board of county commissioners approves the final schedules, standards, and rules, it shall issue an order adopting them. Notice of this order shall be published once a week for four successive weeks in a newspaper having general circulation in the county, with the last publication being not less than seven days before the last day for challenging the validity of the schedules, standards, and rules by appeal to the Property Tax Commission. The notice shall state: - a. That the schedules, standards, and rules to be used in the next scheduled reappraisal of real property in the county have been adopted and are open to examination in the office of the assessor; and - b. That a property owner who asserts that the schedules, standards, and rules are invalid may except to the order and appeal therefrom to the Property Tax Commission within 30 days of the date when the notice of the order adopting the schedules, standards, and rules was first published. - (d) Before the board of county commissioners adopts the schedules of values, standards, and rules, the assessor may collect data needed to apply the schedules, standards, and rules to each parcel in the county. (1939, c. 310, s. 501; 1959, c. 704, s. 4; 1967, c. 944; 1971, c. 806, s. 1; 1973, c. 476, s. 193; c. 695, s. 5; 1981, c. 224; c. 678, s. 1; 1985, c. 216, s. 2; c. 628, s. 4; 1987, c. 45, s. 1; c. 295, s. 1; 1997-226, s. 5.) # § 105-283. Uniform appraisal standards. All property, real and personal, shall as far as practicable be appraised or valued at its true value in money. When used in this Subchapter, the words "true value" shall be interpreted as meaning market value, that is, the price estimated in terms of money at which the property would change hands between a willing and financially able buyer and a willing seller, neither being under any compulsion to buy or to sell and both having reasonable knowledge of all the uses to which the property is adapted and for which it is capable of being used. For the purposes of this section, the acquisition of an interest in land by an entity having the power of eminent domain with respect to the interest acquired shall not be considered competent evidence of the true value in money of comparable land. (1939, c. 310, s. 500; 1953, c. 970, s. 5; 1955, c. 1100, s. 2; 1959, c. 682; 1967, c. 892, s. 7; 1969, c. 945, s. 1; 1971, c. 806, s. 1; 1973, c. 695, s. 11; 1977, 2nd Sess., c. 1297.) | 1443 \$ | STANDARD 6: MASS APPRAISAL, DEVELOPMENT AND REPORTING | |---------|---| | 1444 | In developing a mass appraisal, an appraiser must be aware of, understand, and correctly employ those | | 1445 | recognized methods and techniques necessary to produce and communicate credible mass appraisals. | | 1446 | Comment: STANDARD 6 applies to all mass appraisals of real or personal property | | 1447 | regardless of the purpose or use of such appraisals. ⁵⁵ STANDARD 6 is directed toward the | | 1448 | substantive aspects of developing and communicating credible analyses, opinions, and | | 1449 | conclusions in the mass appraisal of properties. Mass appraisals can be prepared with or | | 1450 | without computer assistance. The reporting and jurisdictional exceptions applicable to public | | 1451 | mass appraisals prepared for ad valorem taxation do not apply to mass appraisals prepared for | | 1452 | other purposes. | | 1453 | A mass appraisal includes: | | 1454 | 1) identifying properties to be appraised; | | 1455 | 2) defining market area of consistent behavior that applies to properties; | | 1456 | 3) identifying characteristics (supply and demand) that affect the creation of value in | | 1457 | that market area; | | 1458 | 4) developing a model structure that reflects the relationship among the characteristics | | 1459 | affecting value in the market area; | | 1460 | 5) calibrating the model structure to determine the contribution of the individual | | 1461 | characteristics affecting value; | | 1462 | 6) applying the conclusions reflected in the model to the characteristics of the | | 1463 | property(ies) being appraised; and | | 1464 | 7) reviewing the mass appraisal results. | | 1465 | The JURISDICTIONAL EXCEPTION RULE may apply to several sections of STANDARD | | 1466 | 6 because ad valorem tax administration is subject to various state, county, and municipal | | 1467 | laws. | | 1468 | Standards Rule 6-1 | | 1469 | In developing a mass appraisal, an appraiser must: | | 1470 | (a) be aware of, understand, and correctly employ those recognized methods and technique | | 1471 |
necessary to produce a credible mass appraisal; | | 1472 | Comment: Mass appraisal provides for a systematic approach and uniform application of | | 1473 | appraisal methods and techniques to obtain estimates of value that allow for statistical review | | 1474 | and analysis of results. | | 1475 | This requirement recognizes that the principle of change continues to affect the manner in | | 1476 | which appraisers perform mass appraisals. Changes and developments in the real property and | | 1477 | personal property fields have a substantial impact on the appraisal profession. | | 1478 | To keep abreast of these changes and developments, the appraisal profession is constantly | | 1479 | reviewing and revising appraisal methods and techniques and devising new methods and | | 1480 | techniques to meet new circumstances. For this reason it is not sufficient for appraisers to | | 1481 | simply maintain the skills and the knowledge they possess when they become appraisers. | ⁵⁵ See Advisory Opinion 32, Ad Valorem Property Tax Appraisal and Mass Appraisal Assignments. U-46 | 1482 | | appraisal. | ontinuously improve his or her skins to remain proficient in mass | | | |--------------|--|---|---|--|--| | 1484
1485 | (b) | not commit a substantial error of omission or commission that significantly affects a manappraisal; and | | | | | 1486 | | Comment: An appraise | must use sufficient care to avoid errors that would significantly affect | | | | 1487 | | | conclusions. Diligence is required to identify and analyze the factors, | | | | 1488
1489 | | conditions, data, and ot of the assignment result | her information that would have a significant effect on the credibility s. | | | | 1490 | (c) | not render a mass appra | uisal in a careless or negligent manner. | | | | 1491 | | Comment: Perfection | s impossible to attain, and competence does not require perfection. | | | | 1492 | | | must not render appraisal services in a careless or negligent manner. | | | | 1493 | | | uires an appraiser to use due diligence and due care. | | | | 1494 | Standar | s Rule 6-2 | | | | | 1495 | In developing a mass appraisal, an appraiser must: | | | | | | 1496 | (a) | identify the client and other intended users; ⁵⁶ | | | | | 1497 | (b) | identify the intended use of the appraisal; ⁵⁷ | | | | | 1498
1499 | | Comment: An appraiser cause the assignment res | must not allow the intended use of an assignment or a client's objectives to ults to be biased. | | | | 1500
1501 | (c) | identify the type and definition of value, and, if the value opinion to be developed is market value, ascertain whether the value is to be the most probable price: | | | | | 1502 | | (i) in terms of ca | sh; or | | | | 1503 | | (ii) in terms of fin | nancial arrangements equivalent to cash; or | | | | 1504 | | (iii) in such other | terms as may be precisely defined; and | | | | 1505 | | (iv) if the opinion | n of value is based on non-market financing or financing with unusual | | | | 506 | | conditions or | incentives, the terms of such financing must be clearly identified and the | | | | 1507 | | appraiser's o | pinion of their contributions to or negative influence on value must be | | | | 508 | | developed by | analysis of relevant market data; | | | | 1509 | | Comment: For certain | types of appraisal assignments in which a legal definition of market | | | | 510 | | | shed and takes precedence, the JURISDICTIONAL EXCEPTION | | | | 511 | | RULE may apply. | - | | | | 1512 | (d) | identify the effective da | te of the appraisal: 58 | | | | | | | | | | $^{^{56}}$ See Statement on Appraisal Standards No. 9, *Identification of Intended Use and Intended Users*. ⁵⁷ See Statement on Appraisal Standards No. 9, *Identification of Intended Use and Intended Users*. ⁵⁸ See Statement on Appraisal Standards No. 3, *Prospective Value Opinions*, and Statement on Appraisal Standards No. 4, *Retrospective Value Opinions*. | 1513
1514 | (e) | identify the characteristics of the properties that are relevant to the type and definition of value and intended use ⁵⁹ , including: | | | | | | |--------------------------------------|---------------|---|---|--|--|--|--| | 1515 | | (i) the group with which a property is identified according to similar market influence; | | | | | | | 1516 | | (ii) | (ii) the appropriate market area and time frame relative to the property being valued; and | | | | | | 1517 | | (iii) | their location and physical, legal, and economic characteristics; | | | | | | 1518
1519
1520 | | | tt: The properties must be identified in general terms, and each individual property in erse must be identified, with the information on its identity stored or referenced in its record. | | | | | | 1521
1522
1523 | | future ex | praising proposed improvements, an appraiser must examine and have available for tamination, plans, specifications, or other documentation sufficient to identify the d character of the proposed improvements. ⁶⁰ | | | | | | 1524
1525
1526
1527
1528 | | however,
develope
planned | ily, proposed improvements are not appraised for ad valorem tax. Appraisers, are sometimes asked to provide opinions of value of proposed improvements so that ers can estimate future property tax burdens. Sometimes units in condominiums and unit developments are sold with an interest in un-built community property, the proe of which, if any, must be considered in the analysis of sales data. | | | | | | 1529
1530 | (f) | - | he characteristics of the market that are relevant to the purpose and intended use of the braisal including: | | | | | | 1531 | | (i) | location of the market area; | | | | | | 1532 | | (ii) | physical, legal, and economic attributes; | | | | | | 1533 | | (iii) | time frame of market activity; and | | | | | | 1534 | | (iv) | property interests reflected in the market; | | | | | | 1535 | (g) | in apprai | sing real property or personal property: | | | | | | 1536
1537 | | (i) | identify the appropriate market area and time frame relative to the property being valued; | | | | | | 1538
1539 | | (ii) | when the subject is real property, identify and consider any personal property, trade fixtures, or intangibles that are not real property but are included in the appraisal; | | | | | | 1540
1541 | | (iii) | when the subject is personal property, identify and consider any real property or intangibles that are not personal property but are included in the appraisal; | | | | | | 1542
1543
1544 | | (iv) identify known easements, restrictions, encumbrances, leases, reservations, covenants, contracts, declarations, special assessments, ordinances, or other items of similar nature; and | | | | | | | 59 Saa | A devisores C | minion 22 | Identifying the Polyment Change toniction of the Subject Property of a Poul Property Approx | | | | | ⁵⁹ See Advisory Opinion 23, *Identifying the Relevant Characteristics of the Subject Property of a Real Property Appraisal Assignment*, if applicable. ⁶⁰ See Advisory Opinion 17, *Appraisals of Real Property with Proposed Improvements*, if applicable. | 1545
1546 | | partial holding contributes pro rata to the value of the whole; | |--------------|----------------------|--| | 1547 | | Comment: The above requirements do not obligate the appraiser to value the whole | | 1548 | | when the subject of the appraisal is a fractional interest, physical segment, or a | | 1549 | | partial holding. However, if the value of the whole is not identified, the appraisal | | 1550 | | must clearly reflect that the value of the property being appraised cannot be used to | | 1551 | | develop the value opinion of the whole by mathematical extension. | | 1552
1553 | (h) | analyze the relevant economic conditions at the time of the valuation, including market acceptability of the property and supply, demand, scarcity, or rarity; | | 1554
1555 | (i) | identify any extraordinary assumptions and any hypothetical conditions necessary in the assignment; and | | 1556 | | <u>Comment:</u> An extraordinary assumption may be used in an assignment only if: | | 1557 | | • it is required to properly develop credible opinions and conclusions; | | 1558 | | the appraiser has a reasonable basis for the extraordinary assumption; | | 1559 | | use of the extraordinary assumption results in a credible analysis; and | | 1560 | | • the appraiser complies with the disclosure requirements set forth in USPAP for | | 1561 | | extraordinary assumptions. | | 1562 | | A hypothetical condition may be used in an assignment only if: | | 1563 | | • use of the hypothetical condition is clearly required for legal purposes, for purposes | | 1564 | | of reasonable analysis, or for purposes of comparison; | | 1565 | | use of the hypothetical condition results in a credible analysis; and | | 1566
1567 | | the appraiser complies with the
disclosure requirements set forth in USPAP for
hypothetical conditions. | | 1568 | (j) | determine the scope of work necessary to produce credible assignment results in accordance with | | 1569 | | the SCOPE OF WORK RULE. ⁶¹ | | 1570 | Standar | ds Rule 6-3 | | 1571 | When n | ecessary for credible assignment results, an appraiser must: | | 1572 | (a) | in appraising real property, identify and analyze the effect on use and value of the following | | 1573 | | factors: existing land use regulations, reasonably probable modifications of such regulations, | | 1574 | | economic supply and demand, the physical adaptability of the real estate, neighborhood trends, | | 1575 | | and highest and best use of the real estate; and | | 1576 | | Comment: This requirement sets forth a list of factors that affect use and value. In considering | | 1577 | | neighborhood trends, an appraiser must avoid stereotyped or biased assumptions relating to | | 1578 | | race, age, color, gender, or national origin or an assumption that race, ethnic, or religious | | 1579 | | homogeneity is necessary to maximize value in a neighborhood. Further, an appraiser must | | 1580 | | avoid making an unsupported assumption or premise about neighborhood decline, effective | | 1581- | | age, and remaining life. In considering highest and best use, an appraiser must develop the | | 1582 | A dv.: | concept to the extent required for a proper solution to the appraisal problem. | | | Advisory
of Work. | Opinion 28, Scope of Work Decision, Performance, and Disclosure, and Advisory Opinion 29, An Acceptable | | эсоре с | n work. | | | 1583
1584
1585
1586
1587 | (b) | in appraising personal property: identify and analyze the effects on use and value of industry trends, value-in-use, and trade level of personal property. Where applicable, analyze the current use and alternative uses to encompass what is profitable, legal, and physically possible, as relevant to the type and definition of value and intended use of the appraisal. Personal property has several measurable marketplaces; therefore, the appraiser must define and analyze the | |--------------------------------------|----------|---| | 1588
1589 | | appropriate market consistent with the type and definition of value. | | | | Comment: The appraiser must recognize that there are distinct levels of trade and each may | | 1590 | | generate its own data. For example, a property may have a different value at a wholesale level | | 1591
1592 | | of trade, a retail level of trade, or under various auction conditions. Therefore, the appraiser must analyze the subject property within the correct market context. | | 1593 | Standard | ls Rule 6-4 | | 1594 | In devel | oping a mass appraisal, an appraiser must: | | 1595
1596 | (a) | identify the appropriate procedures and market information required to perform the appraisal, including all physical, functional, and external market factors as they may affect the appraisal; | | 1597 | | Comment: Such efforts customarily include the development of standardized data collection | | 1598 | | forms, procedures, and training materials that are used uniformly on the universe of properties | | 1599 | | under consideration. | | 1377 | | under consideration. | | 1600 | (b) | employ recognized techniques for specifying property valuation models; and | | 1601 | | <u>Comment:</u> The formal development of a model in a statement or equation is called model | | 1602 | | specification. Mass appraisers must develop mathematical models that, with reasonable | | 1603 | | accuracy, represent the relationship between property value and supply and demand factors, as | | 1604 | | represented by quantitative and qualitative property characteristics. The models may be | | 1605 | | specified using the cost, sales comparison, or income approaches to value. The specification | | 1606 | | format may be tabular, mathematical, linear, nonlinear, or any other structure suitable for | | 1607 | | representing the observable property characteristics. Appropriate approaches must be used in | | 1608 | | appraising a class of properties. The concept of recognized techniques applies to both real and | | 1609 | | personal property valuation models. | | 1610 | (c) | employ recognized techniques for calibrating mass appraisal models. | | | | | | 1611 | | Comment: Calibration refers to the process of analyzing sets of property and market data to | | 1612 | | determine the specific parameters of a model. The table entries in a cost manual are examples | | 1613 | | of calibrated parameters, as well as the coefficients in a linear or nonlinear model. Models | | 1614 | | must be calibrated using recognized techniques, including, but not limited to, multiple linear | | 1615 | | regression, nonlinear regression, and adaptive estimation. | | 1616 | Standard | s Rule 6-5 | | 1617 | In devel | oping a mass appraisal, when necessary for credible assignment results, an appraiser must: | | 1618 | (a) | collect, verify, and analyze such data as are necessary and appropriate to develop: | | 1619 | | (i) the cost new of the improvements; | | 1620 | | (ii) accrued depreciation; | | 1621 | | (iii) value of the land by sales of comparable properties: | | 1622 | | (iv) | value of the property by sales of comparable properties; | |-------|----------|-----------|--| | 1623 | | (v) | value by capitalization of income or potential earnings - i.e., rentals, expenses, interes | | 1624 | | | rates, capitalization rates, and vacancy data; | | 1625 | | Comm | nent: This Standards Rule requires appraisers engaged in mass appraisal to take | | 1626 | | reason | able steps to ensure that the quantity and quality of the factual data that are collected | | 1627 | | are suf | ficient to produce credible appraisals. For example, in real property, where applicable | | 1628 | | and fea | asible, systems for routinely collecting and maintaining ownership, geographic, sales, | | 1629 | | | e and expense, cost, and property characteristics data must be established. Geographic | | 1630 | | | ust be contained in as complete a set of cadastral maps as possible, compiled according | | 1631 | | | ent standards of detail and accuracy. Sales data must be collected, confirmed, screened, | | 1632 | | | ed, and filed according to current standards of practice. The sales file must contain, for | | 1633 | | | ale, property characteristics data that are contemporaneous with the date of sale. | | 1634 | | - | ty characteristics data must be appropriate and relevant to the mass appraisal models | | 1635 | | _ | used. The property characteristics data file must contain data contemporaneous with | | 1636 | | | te of appraisal including historical data on sales, where appropriate and available. The | | 1637 | | | ollection program must incorporate a quality control program, including checks and | | 1638 | | audits | of the data to ensure current and consistent records. | | 1639 | (b) | | stimates of capitalization rates and projections of future rental rates and/or potential | | 1640 | | | gs capacity, expenses, interest rates, and vacancy rates on reasonable and appropriate | | 1641 | | eviden | ce; ⁶² | | 1642 | | | nent: This requirement calls for an appraiser, in developing income and expense | | 1643 | | | ents and cash flow projections, to weigh historical information and trends, current | | 1644 | | | t factors affecting such trends, and reasonably anticipated events, such as competition | | 1645 | | from d | evelopments either planned or under construction. | | 1646 | (c) | identif | y and, as applicable, analyze terms and conditions of any available leases; and | | 1647 | (d) | identif | y the need for and extent of any physical inspection. ⁶³ | | 1648 | Standar | ds Rule (| <u>5-6</u> | | 1649 | When r | iecessar | y for credible assignment results in applying a calibrated mass appraisal model an | | 1650 | appraise | | , | | 1651 | (a) | value i | improved parcels by recognized methods or techniques based on the cost approach, the | | 1652 | , | | omparison approach, and income approach; | | | | | | | 1653 | (b) | | sites by recognized methods or techniques; such techniques include but are not limited to | | 1654 | | | es comparison approach, allocation method, abstraction method, capitalization of ground | | 1655 | | rent, a | nd land residual technique; | | 1656 | (c) | | developing the value of a leased fee estate or a leasehold estate, analyze the effect on value | | 1657 | | if any, | of the terms and conditions of the lease; | | 1658 | | Comm | nent: In ad valorem taxation the appraiser may be required by rules or law to appraise | | 1659_ | | the pro | operty as if in fee simple, as though unencumbered by existing leases. In such cases, | ⁶² See Statement on Appraisal Standards No. 2, *Discounted Cash Flow Analysis*. ⁶³ See Advisory Opinion 2, *Inspection of Subject Property*. | 1660
1661 | | market rent would be used in the appraisal, ignoring the effect of the individual, actual contract rents. | |--|----------
---| | 1662
1663
1664 | (d) | analyze the effect on value, if any, of the assemblage of the various parcels, divided interests, or component parts of a property; the value of the whole must not be developed by adding together the individual values of the various parcels, divided interests, or component parts; and | | 1665
1666
1667 | | <u>Comment:</u> When the value of the whole has been established and the appraiser seeks to value a part, the value of any such part must be tested by reference to appropriate market data and supported by an appropriate analysis of such data. | | 1668
1669
1670 | (e) | when analyzing anticipated public or private improvements, located on or off the site, analyze the effect on value, if any, of such anticipated improvements to the extent they are reflected in market actions. | | 1671 | Standar | ds Rule 6-7 | | 1672 | In recon | ciling a mass appraisal an appraiser must: | | 1673
1674 | (a) | reconcile the quality and quantity of data available and analyzed within the approaches used and the applicability and relevance of the approaches, methods and techniques used; and | | 1675
1676 | (b) | employ recognized mass appraisal testing procedures and techniques to ensure that standards of accuracy are maintained. | | 1677
1678
1679
1680
1681
1682
1683
1684 | | Comment: It is implicit in mass appraisal that, even when properly specified and calibrated mass appraisal models are used, some individual value conclusions will not meet standards of reasonableness, consistency, and accuracy. However, appraisers engaged in mass appraisal have a professional responsibility to ensure that, on an overall basis, models produce value conclusions that meet attainable standards of accuracy. This responsibility requires appraisers to evaluate the performance of models, using techniques that may include but are not limited to, goodness-of-fit statistics, and model performance statistics such as appraisal-to-sale ratio studies, evaluation of hold-out samples, or analysis of residuals. | | 1685 | Standar | ds Rule 6-8 | | 1686
1687 | | on report of a mass appraisal must clearly communicate the elements, results, opinions, and value ions of the appraisal. | | 1688 | Each wi | ritten report of a mass appraisal must: | | 1689 | (a) | clearly and accurately set forth the appraisal in a manner that will not be misleading; | | 1690
1691 | (b) | contain sufficient information to enable the intended users of the appraisal to understand the report properly; | | 1692
1693
1694
1695 | | <u>Comment:</u> Documentation for a mass appraisal for ad valorem taxation may be in the form of (1) property records, (2) sales ratios and other statistical studies, (3) appraisal manuals and documentation, (4) market studies, (5) model building documentation, (6) regulations, (7) statutes, and (8) other acceptable forms. | | 1696
1697 | (c) | clearly and accurately disclose all assumptions, extraordinary assumptions, hypothetical conditions, and limiting conditions used in the assignment; | | 1698 | | <u>Comment:</u> The report must clearly and conspicuously: | |--------------------------------------|-----|---| | 1699
1700 | | state all extraordinary assumptions and hypothetical conditions; and state that their use might have affected the assignment results. | | 1701 | (d) | state the identity of the client and any intended users, by name or type; ⁶⁴ | | 1702 | (e) | state the intended use of the appraisal; ⁶⁵ | | 1703
1704 | (f) | disclose any assumptions or limiting conditions that result in deviation from recognized methods and techniques or that affect analyses, opinions, and conclusions; | | 1705 | (g) | set forth the effective date of the appraisal and the date of the report; | | 1706
1707
1708 | | <u>Comment:</u> In ad valorem taxation the effective date of the appraisal may be prescribed by law. If no effective date is prescribed by law, the effective date of the appraisal, if not stated, is presumed to be contemporaneous with the data and appraisal conclusions. | | 1709
1710
1711 | | The effective date of the appraisal establishes the context for the value opinion, while the date of the report indicates whether the perspective of the appraiser on the market and property as of the effective date of the appraisal was prospective, current, or retrospective. ⁶⁶ | | | | | | 1712 | (h) | state the type and definition of value and cite the source of the definition; | | 1713
1714 | | <u>Comment:</u> Stating the type and definition of value also requires any comments needed to clearly indicate to intended users how the definition is being applied. ⁶⁷ | | 1715 | | When reporting an opinion of market value, state whether the opinion of value is: | | 1716
1717 | | In terms of cash or of financing terms equivalent to cash; or Based on non-market financing with unusual conditions or incentives. | | 1718
1719
1720 | | When an opinion of market value is not in terms of cash or based on financing terms equivalent to cash, summarize the terms of such financing and explain their contributions to or negative influence on value. | | 1721 | (i) | identify the properties appraised including the property rights; | | 1722
1723
1724
1725
1726 | | <u>Comment:</u> The report documents the sources for location, describing and listing the property. When applicable, include references to legal descriptions, addresses, parcel identifiers, photos, and building sketches. In mass appraisal this information is often included in property records. When the property rights to be appraised are specified in a statute or court ruling, the law must be referenced. | ⁶⁴ See Statement on Appraisal Standards No. 9, *Identification of the Intended Use and Intended Users*. ⁶⁵ See Statement on Appraisal Standards No. 9, *Identification of the Intended Use and Intended Users*. ⁶⁶ See Statement on Appraisal Standards No. 3, Retrospective Value Opinions, and Statement on Appraisal Standards No. 4, Prospective Value Opinions. ⁶⁷ See Statement on Appraisal Standards No. 6, *Reasonable Exposure Time in Real Property and Personal Property Opinions of Value*. See also Advisory Opinion 7, *Marketing Time Opinions*. | 1727
1728 | (j) | describe the scope of work used to develop the appraisal; ⁶⁸ exclusion of the sales comparison approach, cost approach, or income approach must be explained; | |--------------|-------|--| | 1729 | | Comment: Because intended users' reliance on an appraisal may be affected by the scope of | | 1730 | | work, the report must enable them to be properly informed and not misled. Sufficient | | 1731 | | information includes disclosure of research and analyses performed and might also include | | 1732 | | disclosure of research and analyses not performed. | | 1733 | | When any portion of the work involves significant mass appraisal assistance, the appraiser | | 1734 | | must describe the extent of that assistance. The signing appraiser must also state the name(s) | | 1735 | | of those providing the significant mass appraisal assistance in the certification, in accordance | | 1736 | | with Standards Rule 6-9. ⁶⁹ | | 1737
1738 | (k) | describe and justify the model specification(s) considered, data requirements, and the model(s) chosen; | | | | | | 1739 | | Comment: The appraiser must provide sufficient information to enable the client and | | 1740 | | intended users to have confidence that the process and procedures used conform to accepted | | 1741 | | methods and result in credible value conclusions. In the case of mass appraisal for ad valorem | | 1742 | | taxation, stability and accuracy are important to the credibility of value opinions. The report | | 1743 | | must include a discussion of the rationale for each model, the calibration techniques to be | | 1744 | | used, and the performance measures to be used. | | 1745 | (1) | describe the procedure for collecting, validating, and reporting data; | | 1746 | | Comment: The report must describe the sources of data and the data collection and validation | | 1747 | | processes. Reference to detailed data collection manuals must be made, as appropriate, | | 1748 | | including where they may be found for inspection. | | 1749 | (m) | describe calibration methods considered and chosen, including the mathematical form of the | | 1750 | (111) | final model(s); describe how value conclusions were reviewed; and, if necessary, describe the | | 1751 | | availability of individual value conclusions; | | 1752 | (n) | when an opinion of highest and best use, or the appropriate market
or market level was | | 1753 | · / | developed, discuss how that opinion was determined; | | 1754 | | Comment: The mass appraisal report must reference case law, statute, or public policy that | | 1755 | | describes highest and best use requirements. When actual use is the requirement, the report | | 1756 | | must discuss how use-value opinions were developed. The appraiser's reasoning in support of | | 1757 | | the highest and best use opinion must be provided in the depth and detail required by its | | 1758 | | significance to the appraisal. | | 1759 | (o) | identify the appraisal performance tests used and set forth the performance measures attained; | | 1760 | (p) | describe the reconciliation performed, in accordance with Standards Rule 6-7; and | | 1761 | (q) | include a signed certification in accordance with Standards Rule 6-9. | ⁶⁸ See Advisory Opinion 28, Scope of Work Decision, Performance, and Disclosure and Advisory Opinion 29, An Acceptable Scope of Work. ⁶⁹ See Advisory Opinion 31, Assignments Involving More than One Appraiser. | 1762 | Standards Rule 6-9 | | | | | |--------------|--|--|--|--|--| | 1763
1764 | | | | | | | 1765 | I certify that, to the best of my knowledge and belief: | | | | | | 1766 | — the statements of fact contained in this report are true and correct. | | | | | | 1767 | the reported analyses, opinions, and conclusions are limited only by the reported | | | | | | 1768 | assumptions and limiting conditions, and are my personal, impartial, and unbiased | | | | | | 1769 | professional analyses, opinions, and conclusions. | | | | | | 1770 | I have no (or the specified) present or prospective interest in the property that is the | | | | | | 1771 | subject of this report, and I have no (or the specified) personal interest with respect to | | | | | | 1772 | the parties involved. | | | | | | 1773 | I have performed no (or the specified) services, as an appraiser or in any other capacity, | | | | | | 1774 | regarding the property that is the subject of this report within the three-year period | | | | | | 1775 | immediately preceding acceptance of this assignment. | | | | | | 1776 | — I have no bias with respect to any property that is the subject of this report or to the | | | | | | 1777 | parties involved with this assignment. | | | | | | 1778 | my engagement in this assignment was not contingent upon developing or reporting | | | | | | 1779 | predetermined results. | | | | | | 1780 | — my compensation for completing this assignment is not contingent upon the reporting | | | | | | 1781
1782 | of a predetermined value or direction in value that favors the cause of the client, the amount of the value opinion, the attainment of a stipulated result, or the occurrence of | | | | | | 1782 | a subsequent event directly related to the intended use of this appraisal. | | | | | | 1783 | — my analyses, opinions, and conclusions were developed, and this report has been | | | | | | 1785 | prepared, in conformity with the <i>Uniform Standards of Professional Appraisal Practice</i> . | | | | | | 1786 | I have (or have not) made a personal inspection of the properties that are the subject | | | | | | 1787 | of this report. (If more than one person signs the report, this certification must clearly | | | | | | 1788 | specify which individuals did and which individuals did not make a personal | | | | | | 1789 | inspection of the appraised property.) ⁷⁰ | | | | | | 1790 | no one provided significant mass appraisal assistance to the person signing this | | | | | | 1791 | certification. (If there are exceptions, the name of each individual providing | | | | | | 1792 | significant mass appraisal assistance must be stated.) | | | | | | 1793 | Comment: The above certification is not intended to disturb an elected or appointed assessor's | | | | | | 1794 | work plans or oaths of office. A signed certification is an integral part of the appraisal report. | | | | | | 1795 | An appraiser, who signs any part of the mass appraisal report, including a letter of transmittal, | | | | | | 1796 | must also sign this certification. | | | | | | 1797 | In an assignment that includes only assignment results developed by the real property | | | | | | 1798 | appraiser(s), any appraiser(s) who signs a certification accepts full responsibility for all | | | | | | 1799 | | | | | | | 1800 | report. In an assignment that includes personal property assignment results not developed by | | | | | | 1801 | the real property appraiser(s), any real property appraiser(s) who signs a certification accepts | | | | | | 1802 | full responsibility for the real property elements of the certification, for the real property | | | | | | 1803 | assignment results, and for the real property contents of the appraisal report. | | | | | | 1804 | In an assignment that includes only assignment results developed by the personal property | | | | | | 1805 | appraiser(s), any appraiser(s) who signs a certification accepts full responsibility for all | | | | | | 1806 | elements of the certification, for the assignment results, and for the contents of the appraisal | | | | | | 1807 | report. In an assignment that includes real property assignment results not developed by the | | | | | ⁷⁰ See Advisory Opinion 2, *Inspection of Subject Property*. | 1808 | personal property appraiser(s), any personal property appraiser(s) who signs a certification | |------|---| | 1809 | accepts full responsibility for the personal property elements of the certification, for the | | 1810 | personal property assignment results, and for the personal property contents of the appraisal | | 1811 | report. | | | | | 1812 | When a signing appraiser(s) has relied on work done by appraisers and others who do not sign | | 1813 | the certification, the signing appraiser is responsible for the decision to rely on their work. | | 1814 | The signing appraiser(s) is required to have a reasonable basis for believing that those | | 1815 | individuals performing the work are competent. The signing appraiser(s) also must have no | | 1816 | reason to doubt that the work of those individuals is credible. | | | | | 1817 | The names of individuals providing significant mass appraisal assistance who do not sign a | | 1818 | certification must be stated in the certification. It is not required that the description of their | | 1819 | assistance be contained in the certification, but disclosure of their assistance is required in | | 1820 | accordance with Standards Rule 6-8(j). ⁷¹ | | | | # Randolph County Tax Department's Guide to Leasehold Improvements Leasehold improvements are modifications made to a leased premises used for business purposes by the tenant or lessee. They are taxable in North Carolina as business personal property. It is the responsibility of the lessee (not the real property owner) to properly list these improvements with the Tax Department as of January 1 of each year. Any modifications made to a leased premises for the purpose of improving the tenant's comfort, enhancing the tenant's image, or promoting the tenant's business viability are considered leasehold improvements. The ownership or taxability of leasehold improvements may be further or otherwise defined by a lease agreement between the landlord and tenant. The following are examples of real property taxable to the building/land owner and personal property/leasehold improvements taxable to the lessee. 1. Plumbing Waste supply lines, Waste and vent lines. Real Property 2. Electrical Main electrical connections Breaker panels, transformers, and meters for building. and meters for building. Real Property Real Property All wiring for basic electrical service Additional electrical connections breaker panels, transformers, meters, and wiring for equipment. Personal Property 3. Floor and floor covering concrete slab floor or frame subfloor. Real Property Tile, vinyl flooring carpet glued to concrete slab floor. Any flooring installed by the tenant over the base floor or sub-floor is a lease-hold improvement Baseboards added by the tenant Personal property when 4. Lighting Panel lighting, track lighting Personal property when lens covers added by the tenant outdoor lighting Personal property Emergency light and exit lights Personal property 5. Doors Rolling grille doors (security gates) as in malls Personal property Fire doors Real property Locks and alarm locks Personal property 6. Interior Finishes Beams Real property Floor to ceiling walls Real property Column enclosures, painting and staining wall cover, moveable, freestanding partitions, mirrors affixed to walls Built-in counters, fitting rooms Built-in counters, fitting rooms Personal property 7. Roof-top HVAC system Real property 8. Sprinkler system (building) Real property Additional sprinklers for equipment Personal property 9. Smoke detector systems Personal property 10. Signs All signs are considered personal property even when permanently affixed to the ground 11. Store fronts Real property Removal would materially harm the premises. 12. Construction allowances paid to the tenants Personal property Note that architectural, engineering fees, freight, transportation and installation costs attributable to the design and construction of leasehold improvements are considered part of the improvements. # RANDOLPH COUNTY TAX DEPARTMENT CLASSIFICATION OF SELECTED ITEMS AS REAL OR PERSONAL # A General Guide In general, machinery and equipment used primarily as part of a manufacturing process (process equipment) is taken as <u>Personal Property</u>. Machinery and equipment which is
part of the land or building improvement is taken as <u>Real Estate</u>. | ITEMS | REAL | PERSONAL | |---|------|----------| | Acoustical fire resistant drapes & curtains | | xx | | Apartment Appliances | | XX | | Asphalt plants – batch mix, etc., moveable | | XX | | Air-Conditioning – building air conditioning, i
refrigeration equipment for comfort
occupants, built-in | • | X | | Air-Conditioning – window units, package uni
e.g. that are used in <u>data processing</u>
<u>mfg processing</u> | | xx | | Airplanes | | XX | | Auto exhaust systems– for equipment | | XX | | Auto exhaust systems – built-in floor or ceiling | x | X | | Awning | | XX | | Bank vault doors (on leased property) | | xx | | Bank vault doors (owner/operator) | | XX | | Bank equipment (teller counters & lockers) | | XX | | Bar and bar equipment | | xx | | Boats and motors – all | | XX | |---|----|----------| | Bowling alley lanes (equipment) | | xx | | Boiler – primarily for process | | xx | | Boiler – for service of building | xx | | | Bulk barns | | XX | | Burglar alarms | | xx | | Car wash – all equipment | | xx | | Concrete plant – electronic mixing, conveyors, tanks, etc | | xx | | Construction and grading equipment (Non-licensed vehicle, etc) | | XX | | Construction allowance paid to tenant | | xx | | Conveyor systems | | XX | | Coolers (walk-in) – prefab, portable | | xx | | Cold Storage – built-in cold storage rooms | xx | | | Cold Storage – refrigeration equipment | | xx | | Cooling towers – primary use in mfg | | xx | | Cooling towers – primary use for building (Air conditioners for building) | xx | | | Computers – all and all related equipment & data lines | | XX | | Cooking equipment (restaurant, etc.) | | XX | | Compressed air & gas systems for process | | xx | | Control systems – electronic | | XX | | Chair – all types
Dairy processing plants – all process items | | XX
XX | | Data processing equipment – all items | | XX | |---|----|----| | Diagnostic center equipment (auto) | | xx | | Dock levelers | xx | | | Drying systems (special heating process system) | | xx | | Dumpsters | | | | Dust catchers, control systems etc. | | xx | | Desks – all | | xx | | Electronic control systems (weighing, mixing, etc) | | xx | | Fire alarm systems | | xx | | Fans – freestanding | | xx | | Farm equipment – all | | xx | | Fencing on residential used for business | | xx | | Floors, computer room | xx | | | Floors, computer room (raised) | | xx | | Foundations for machinery equipment | | xx | | Freight charges | | xx | | Furnaces – steel mill process, etc, foundry | | xx | | Furniture and fixtures | | xx | | Fuels not held for resale | | xx | | Grain bin, not permanently attached to realty | | xx | | Greenhouses – if permanently affixed
Greenhouse benches, heating system, etc | xx | xx | | Humidifiers, process | XX | |---|----| | Heating systems, process | XX | | Hoppers – metal bin type | XX | | Hospital systems – oxygen, public address, emergency
Electric, closed TV call system, autoclave, etc | xx | | Hotel/Motel – appliances, TV & wiring | XX | | Inventories | XX | | Incinerators | XX | | Industrial piping, process | XX | | Irrigation equipment – farm | XX | | Insulation cost | XX | | Kilns – metal tunnel, moveable | XX | | Kiln heating system | XX | | Laboratory equipment | XX | | Leased equipment – lessor or lessee possession | XX | | Laundry bins | XX | | Leasehold improvement (7 yr contingent upon revaluation cycle) | xx | | Lighting – yard lighting | xx | | Lifts – other than elevator | xx | | Law/professional | xx | | Law libraries | xx | | Machinery and equipment | xx | | Medical equipment | | XX | | |--|----|----|----| | Milk handling – milking, cooling, piping, storage | | xx | | | Mineral rights | | xx | | | Night depository | | xx | | | Office equipment – all | | | xx | | Ovens – food processing | | xx | | | Office supplies | | xx | | | Oil company equipment – pumps, supplies, etc. | | xx | | | Outdoor lighting signs & flag poles | | xx | | | Power generator systems (auxiliary emergency, etc) | | xx | | | Portable buildings (greenhouse, construction, etc) | | xx | | | Package and labeling equipment | | xx | | | Piping systems – process piping | | xx | | | Playground equipment | | xx | | | Poultry house equipment | | xx | | | Public address systems (intercom, music, etc) | | xx | | | Pneumatic tube systems | | xx | | | Railroad sidings (other than railroad-owned) | xx | | | | Restaurant equipment included attached to floor & bldg | | xx | | | Refrigeration system – compressors, etc | | xx | | | Rock crusher | | xx | | | Safe wall & free standing | | xx | | | Scales | | XX | |---|----|----| | Sales tax as part of all cost (equipment) | | xx | | Scale houses (unless portable | xx | | | Satellite dishes | | xx | | Screens, movie-indoor | | xx | | Screens – drive-in outdoor theater | | xx | | Signs (including billboards, etc.) | | xx | | Speakers (at drive-ins) all types | | xx | | Spray booths (unless built-in, can be real) | | xx | | Seats – theater | | xx | | Software capitalized | | xx | | Sound projection equipment | | xx | | Sound systems | | xx | | Spare parts | | xx | | Sprinkler system – fire protection | xx | | | Sprinkler system for process | | xx | | Sprinkler – golf course | xx | | | Switchboard (motel, etc. – when not owned by utility) | | xx | | Service station equipment – pumps, tanks, lifts | | xx | | Supplies (office & other) | | XX | | Swine house equipment | | XX | | Storage containers | | XX | | Tanks – if permanently affixed structure, etc. | | XX | (e.g., bulk plant) Tanks - manufacturing, process, etc. XXTanks - service station underground gasoline & above ground XXTeller II – banks similar to computer equipment $\mathbf{X}\mathbf{X}$ Tunnels – unless part of process system XX **Transformer banks** $\mathbf{X}\mathbf{X}$ Solar - thermal XXSolar – photo voltaic XX (not owned by real estate owner) Solar – photo voltaic XX(owned by real estate owner but used for process) Towers - TV, radio, CATV, two-way radio, etc. XXTowers – microwave and equipment XXTelephone system - private XX XXVacuum system, process Ventilation systems – building improvement $\mathbf{X}\mathbf{X}$ Ventilation systems – mfg. process, etc XX $\mathbf{X}\mathbf{X}$ Vent fans - free-standing Utility systems – (other than in-state assessed utilities, XX and other than central heating and cooling for buildings, etc., e.g., motel-owned telephone switchboard systems, private railroad sidings, private water systems, emergency power generating equipment, etc.) Utility systems – buildings for private systems $\mathbf{X}\mathbf{X}$ Walk-in coolers – portable or prefab, etc XX | Walls – partitions, portable | XX | |---|----| | Water lines – for process above or below ground | xx | | Water tanks, process equipment | XX | | Water coolers – electric | xx | | Wells – pumps, motors, equipment | xx | | Wiring – power wiring for machinery and equipment computers | xx | # Standard on Mass Appraisal of Real Property **Approved January 2012** # **International Association of Assessing Officers** This standard replaces the 2002 Standard on Mass Appraisal of Real Property. The 2002 standard combined and re-placed the 1983 Standard on the Application of the Three Approaches to Value in Mass Appraisal, the 1984 Standard on Mass Appraisal, and the 1988 Standard on Urban Land Valuation. The IAAO's assessment standards represent a consensus in the assessing profession and have been adopted by the Executive Board of the International Association of Assessing Officers (IAAO). The objective of the IAAO's standards is to provide a systematic means by which concerned assessing officers can improve and standardize the operation of their offices. The IAAO's standards are advisory in nature and the use of, or compliance with, such standards is purely voluntary. If any portion of these standards is found to be in conflict with the Uniform Standards of Professional Appraisal Practice (USPAP) or state laws, USPAP and state laws shall govern. # **Acknowledgments** At the time of the 2011 revision (approved January 2012) the Technical Standards Committee was composed of Alan Dornfest, AAS, chair; Doug Warr, AAS; Bill Marchand; Robert Gloudemans; Mary Reavey; Dennis Deegear, associate member; and Chris Bennett, staff liaison. # **Revision Notes** The last full revision of the *Standard on Mass Appraisal of Real Property* was in February 2002. The most recent partial revisions, approved January 2012, were made to section 3.3 Published by International Association of Assessing Officers 314 W 10th St Kansas City, Missouri 64105-1616 816/701-8100 fax: 816/701-8149 http://www.iaao.org ISBN 978-0-88329-202-0 Copyright $\ensuremath{\mathbb{O}}$ 2012 by the International Association of Assessing Officers All rights reserved. No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher. However, assessors wishing to use this standard for educating legislators and policymakers may photocopy it for limited distribution. Printed in the United States of America. | Contents | 1. Scope | 5 | |------------------|---|--------------| | 2. Introduction | | 5 | | | Maintaining Property Data | | | 3.1 Overview | | 5 | | | c Data | | | 3.3 Property C | haracteristics Data (rev. Jan-2011, Jan-2012) | 5 | | | tion of
Property Characteristics Data | | | | Collection | | | | Initial Data Collection | | | 3.3.2.2 | Data Collection Format | 6 | | | Data Collection Manuals | | | | ata Entry | | | 3 3 2 4 | Data Accuracy Standards | 7 | | 3 3 2 5 | Data Collection Quality Control | ,
7 | | | Entry | | | | aining Property Characteristics Data | | | | native to Periodic On-Site Inspections | | | | | | | 3.4 Sales Dala | (rev. Jan-2011) |)
0 | | | d Expense Data | | | 3.0 COSt and D | epreciation Data | 5 | | 4 Valuation | | 0 | | | Models | | | | pproach | | | | Comparison Approach | | | 4.3 The Sales (| e Approach |) | | 4.4 THE INCOME | # Approach | <i>j</i> | | | ions by Property Type1 | | | | e-Family Residential Property1 | | | 4.0.1 Siligi | ramily Residential Property1 | J
n | | | nercial and Industrial Property1 | | | | Agricultural Land1 | | | | ultural Property1 | | | | al-Purpose Property1 | | | | of Reappraisals1 | | | 4.7 Frequency | or Keappraisais | 1 | | 5 Managerial Con | siderations1 | 1 | | 5.1 Overview | 1 | 1 | | | | | | | ssing Support | | | | vare | | | | vare | | | | g for Appraisal Services1 | | | | /iew | | | | use Staff1 | | | | st Considerations1 | | | | /iew1 | | | | y Issues | | | 5.5.2 i olio | nistrative Issues | -
3 | | Ololo Adilli | | • | | References | | 3 | | | | | | Glossary | 14 | 4 | # **Standard on Mass Appraisal of Real Property** # 1. Scope This standard defines requirements for the mass appraisal of real property. The primary focus is on mass appraisal for ad valorem tax purposes. However, the principles defined here should also be relevant to computer-assisted mass appraisals (or automated valuation models) used for other purposes, such as mortgage portfolio management. The standard primarily addresses the needs of the assessor, assessment oversight agencies, and taxpayers. This standard addresses mass appraisal procedures by which property can be appraised at market value, including mass appraisal application of the three traditional approaches to value (cost, sales comparison, and income). Appraisals made on an other-than-market-value basis or on an individual basis are outside the scope of this standard. Where assessed value differs from market value because of statutory constraints such as use value, acquisition value, base year value, or classification, this standard does not provide guidance for determining assessed value. Mass appraisal requires complete and accurate data, effective valuation models, and proper management of resources. Section 3 focuses on the collection and maintenance of property data. Section 4 summarizes the primary considerations in valuation methods, including the role of the three approaches to value in the mass appraisal of various types of property. Section 5 discusses certain managerial considerations: staff levels, data processing support, contracting for reappraisals, support of valuations, and benefit-cost issues. #### 2. Introduction Market value for assessment purposes is generally determined through the application of mass appraisal techniques. Mass appraisal is the process of valuing a group of properties as of a given date using common data, standardized methods, and statistical testing (IAAO [1990, chapter 5] and Gloudemans [1999, chapter 5]). To determine a parcel's value, assessing officers must rely upon valuation equations, tables, and schedules developed through mathematical analysis of market data. Unless required by law, values for individual parcels should not be based solely on the sale price of a property; rather, valuation schedules and models should be consistently applied to property data that is correct, complete, and up-to-date. Properly administered, the development, construction, and use of a computer-assisted mass appraisal system results in a valuation system characterized by accuracy, uniformity, equity, reliability, and low per-parcel costs (see section 5.5). Except for unique properties, individual analyses and appraisals of properties are not practical for ad valorem tax purposes. **3. Collecting and Maintaining Property Data** Choose software wisely because it can limit the data that can be collected. The choice of data is largely dictated by the valuation software, whether it is programmed in house or supplied by a commercial service, a mass appraisal company, or a state agency. #### 3.1 Overview Uniform and accurate valuation of property requires correct, complete, and up-to-date property data. Assessing offices must establish effective procedures for collecting and maintaining property data (that is, property ownership, location, size, use, physical characteristics, sales prices, rents, costs, and operating expenses). Such data are also used for performance audits, defense of appeals, public relations, and management information. The following sections recommend procedures for collecting these data. #### 3.2 Geographic Data Assessors should maintain accurate, up-to-date cadastral maps (also known as assessment maps, tax maps, parcel boundary maps, and property ownership maps) covering the entire jurisdiction. At a minimum these maps should display a unique parcel number for each parcel. Such cadastral maps allow assessing officers to identify and locate all parcels, in both the field and the office. Maps become especially valuable in the mass appraisal process when a geographic information system (GIS) is used. A GIS permits graphic displays of sale prices, assessed values, inspection dates, work assignments, land uses, and much more. In addition, a GIS permits high-level analysis of nearby sales, neighborhoods, and market trends; when linked to a computer-assisted mass appraisal system, the results can be very useful. For additional information on cadastral maps, parcel identification systems, and GIS, see the *Standard on Manual Cadastral Maps and Parcel Identifiers* (IAAO 2004), *Standard on Digital Cadastral Maps and Parcel Identifiers* (IAAO 2009), and *Procedures and Standards for a Multipurpose Ca-dastre* (National Research Council 1983), and *GIS Guidelines for Assessors* (URISA/IAAO 1999). ## 3.3 Property Characteristics Data The assessor should collect and maintain sufficient property characteristics data for classification, valuation, and other purposes. Accurate valuation of real property by any method requires descriptions of land and building characteristics. #### 3.3.1 Selection of Property Characteristics Data Property characteristics to be collected and maintained should be based on the following: - factors that influence the market in the locale in question - requirements of the valuation methods that will be employed - · requirements of classification and property tax policy - requirements of other governmental and private users - · marginal benefits and costs of collecting and maintaining each property characteristic Determining what data on property characteristics to collect and maintain for a computer-assisted mass appraisal system is a crucial decision with long-term consequences. A pilot program is one means of evaluating the benefits and costs of collecting and maintaining a particular set of property characteristics. (See IAAO [1990, chapter 5] and Gloudemans [1999, chapter 2].) In addition, much can be learned from studying the data used in successful computer-assisted mass appraisals in other jurisdictions. Data collection and maintenance are usually the most costly aspects of a computer-assisted mass appraisal. Collecting data that are of little importance in the assessment process should be avoided unless another governmental or private need is clearly demonstrated. The quantity and quality of existing data should be reviewed. If the data are sparse and unreliable, a major recanvass will be necessary. Data that have been confirmed to be reliable should be used whenever possible. New valuation programs or enhancements requiring major recanvass activity or conversions to new coding formats should be viewed with suspicion when the existing database already contains most major property characteristics and is of generally good quality. The following property characteristics are typically used in predicting residential property values: Improvement Data - Living area - Construction quality or key components thereof (foundation, exterior wall type, etc.) - Effective age or condition - Building design or style - Secondary areas including basements, garages, covered porches, and balconies - Building features such as baths and central air conditioning - Significant detached structures including guests houses, boat houses, and barns #### Land Data - Lot size - Available utilities (sewer, water, electricity) #### Location Data - Market area - Submarket area or neighborhood - Site amenities, especially view and golf course or water frontage - External nuisances, e.g., heavy traffic, airport noise, or proximity to commercial uses For a discussion of property characteristics important for various commercial property types, see Gloudemans and Almy (2011, chapter 9). ## 3.3.2 Data Collection Collecting property characteristics data is a critical and expensive phase of reappraisal. A successful data collection program requires clear and standard coding and careful monitoring through a quality control program. The development and use of a data collection manual is essential in achieving accurate and consistent data collection. The data collection program should result in complete and accurate data. #### 3.3.2.1 Initial Data Collection A physical inspection is necessary to obtain initial property characteristics data. This inspection can be performed either by appraisers or by specially trained data collectors. In a joint approach, experienced appraisers would make key subjective decisions, such as the assignment of construction quality class or grade, and data collectors would gather all other details. Depending on the data required, an interior inspection might be
necessary. At a minimum, a comprehensive exterior inspection should be conducted. #### 3.3.2.2 Data Collection Format Data should be collected in a prescribed format designed to facilitate both the collecting of data in the field and entry of the data into the computer system. A logical arrangement of the collection format makes data collection easier. For example, all items requiring an interior inspection should be grouped together. The coding of data should be as objective as possible, with measurements, counts, and check-off items used in preference to items requiring subjective evaluations (such as "number of plumbing fixtures" versus "adequacy of plumbing: poor, average, good"). With respect to check-off items, the available codes should be exhaustive and mutually exclusive, so that exactly one code logically pertains to each observable variation of a building feature (such as type of room). The data collection format should promote consistency among data collectors, be clear and easy to use, and be adaptable to virtually all types of construction. Specialized data collection formats may be necessary to collect information on agricultural property, timberland, industrial parcels, and other property types. # 3.3.2.3 Data Collection Manuals A clear, thorough, and precise data collection manual is essential and should be developed, updated, and maintained. The written manual should explain how to collect and record each data item. Pictures, examples, and illustrations are particularly helpful. The manual should be simple yet complete, with a high degree of standardization for uniformity. Data collection staff should be trained in the use of the manual and related updates to maintain consistency. The manual should present guidelines for personal conduct during field inspections, and, if interior data are required, it should outline procedures to follow when the property owner has denied access or when entry might be risky. #### 3.3.2.4 Data Accuracy Standards The following standards of accuracy for data collection are recommended. - Continuous or area measurement data, such as living area and exterior wall height, should be accurate within one foot (rounded to the nearest foot) of the true dimensions or within 5% of the area. (One foot equates to approximately 30 centimeters in the metric system of measurement). If areas, dimensions, or volumes must be estimated, the property record should note where quantities are estimated. - For each objective, categorical, or binary data field to be collected or verified, at least 95 percent of the coded entries should be accurate. Objective, categorical, or binary data characteristics include such attributes as exterior wall material, number of full bathrooms, and waterfront view. As an example, if a data collector captures 10 objective, categorical, or binary data items for 100 properties, at least 950 of the 1,000 total entries should be correct. - For each subjective categorical data field collected or verified, data should be coded correctly at least 90 percent of the time. Subjective categorical data characteristics include data items such as quality grade, physical condition, and architectural style. #### 3.3.2.5 Data Collection Quality Control A quality control program is necessary to ensure that data accuracy standards are achieved and maintained. Independent quality control inspections should occur immediately after the data collection phase begins and may be performed by jurisdiction staff, project consultants, auditing firms, or oversight agencies. The inspections should review random samples of completed work for completeness and accuracy and keep tabulations of items coded correctly or incorrectly, so that statistical tests can be used to determine whether accuracy standards have been achieved. Stratification by geographic area, property type, or individual data collector can help detect patterns of data error. Data that fails to meet quality control standards should be re-collected. The accuracy of subjective data should be judged primarily by conformity with written specifications and examples in the data collection manual. Subjective data judgment calls should be substantiated by field notes. #### 3.3.3 Data Entry To avoid duplication of effort, the data collection form should be able to serve as the data entry form. Data entry should be routinely audited to ensure accuracy. Data entry accuracy should be as close to 100 percent as possible, and should be supported by a full set of range and consistency edits. These are error or warning messages generated in response to invalid or unusual data items. Examples of data errors include missing data codes and invalid characters. Warning messages should also be generated when data values exceed normal ranges (for example, more than eight rooms in a 1,200-square-foot residence). The warnings should appear as the data are entered. When feasible, action on the warnings should take place during data entry. Field data entry devices provide the ability to edit data as it is entered and also eliminate data transcription errors. # 3.3.4 Maintaining Property Characteristics Data Property characteristics data should be continually updated in response to changes brought about by new construction, new parcels, remodeling, demolition, and destruction. There are several ways of doing this. The most efficient involves building permits. Ideally, strictly enforced local ordinances would require building permits for all significant construction activity, and the as-sessor would be given copies of the permits. This would allow the assessor to identify properties whose characteristics are likely to change, to inspect such parcels on a timely basis (preferably as close to the assessment date as possible), and to update the files accordingly. Aerial photographs also can be helpful in identifying new or previously unrecorded construction and land use. Some jurisdictions have used self-reporting, in which property owners are given the data in the assessor's records and asked to provide additions or corrections. Information derived from multiple listing sources and other third-party vendors can be used to update property records. A system should be developed for making periodic field inspections to identify properties and ensure that property characteristics data are complete and accurate. Properties should be periodically revisited to ascertain that assessment records are accurate and current. Assuming that most new construction activity is identified through building permits or other ongoing procedures, a physical review at least every four to six years should be conducted, including an on-site verification of property characteristics. A reinspection should include partial remeasurement of the two most complex sides of improvements and a walk around the improvement to identify additions and deletions or independent review of the current measurements with specific requirements by an outside auditing firm or oversight agency. Photographs taken at previous physical inspections can help identify changes. # 3.3.5 Alternative to Periodic On-Site Inspections Provided that an initial physical inspection has been completed—and the requirements of a well-maintained data-collection and quality-management program (see sections 3.3.2.1 to 3.3.4) have been achieved, jurisdictions may employ a set of digital imaging technology tools to supplement field inspections with a computer-assisted office review. These imaging tools should include: - Current high-resolution street-view images (at a sub-inch pixel resolution that enables quality grade and physical condition to be verified) - Orthophoto images (minimum 6" pixel resolution in urban/suburban and 12" resolution in rural areas, updated every 2 years in rapid growth areas, or 6–10 years in slow growth areas). - Low level oblique images capable of being used for measurement verification (four cardinal directions, minimum 6" pixel resolution in ur-ban/suburban and 12" pixel resolution in rural areas, updated every 2 years in rapid growth areas or, 6–10 years in slow growth areas). Effective tool sets validate CAMA data and incorporate change detection techniques that compare building dimension data (footprints) in the CAMA system to georeferenced imagery or remote sensing data from sources (such as LiDAR [light detection and ranging]) and identify potential CAMA sketch discrepancies for further investigation. In addition, appraisers should visit assigned areas on an annual basis to observe changes in neighborhood condition, trends and property characteristics. An on-site physical review is recommended when significant construction changes are detected, a property is sold, or an area is affected by catastrophic damage. Building permits should be regularly monitored and affected properties that have significant change should be inspected when work is complete. It is incumbent on assessment jurisdictions and oversight agencies to ensure that images meet expected quality standards. Standards required for vendor-supplied images should be spelled out in the RFP and contract for services, and images should be checked for compliance with specified requirements. For general guidance on preparing RFPs and contracting for vendor-supplied services, see the *Standard on Contracting for Assessment Services* [IAAO 2008]. #### 3.4 Sales Data States and provinces should seek mandatory disclosure laws to ensure comprehensiveness of sales data files. Regardless of the availability of such statutes, a file of sales data must be maintained. Sales data are required in all applications of the sales comparison approach, in the development of market-based depreciation schedules in the cost approach, and in the derivation of capitalization rates or discount rates. Refer to IAAO (1990, chapter 5) and Gloudemans (1999, chapter 2) for guidelines relating to the acquisition and processing of sales data. #### 3.5 Income and
Expense Data Income and expense data must be collected for income-producing property, as these data are required in the application of the income approach to value. (See section 4.4.) Refer to IAAO (1990, chapter 5) and Gloude-mans (1999, chapter 2) for guidelines addressing the collection and processing of income and expense data. #### 3.6 Cost and Depreciation Data Current cost and depreciation data adjusted to the local market are required for the cost approach (see section 4.2). Cost and depreciation manuals and schedules may be purchased from commercial services or created in-house. See Gloudemans (1999, chapter 4) for guidelines on creating manuals and schedules. #### 4. Valuation #### 4.1 Valuation Models Any appraisal, whether single-property appraisal or mass appraisal, uses a model, that is, a representation in words or an equation of the relationship between value and variables representing factors of supply and demand. Mass appraisal models attempt to represent the market for a specific type of property in a specified area. Mass appraisers must first specify the model, that is, identify the variables (supply and demand factors) that influence value, for example, square feet of living area. Then, mass appraisers must calibrate the model, that is, determine the adjustments or coefficients that best represent the value contribution of the variables chosen, for example, the dollar amount the market places on each square foot of living area. Careful and extensive market analysis is required for both specification and calibration of a model that estimates values accurately. All three approaches to value—the cost approach, the sales comparison approach, and the income approach—are modeled for mass appraisal. Geographic stratification is appropriate when the value of property attributes varies significantly among areas. It is particularly effective when housing types and styles are relatively uniform within areas. Separate models can be developed for market areas (also known as economic or model areas). Subareas or neighborhoods can serve as variables in modeling and can also be used in land value tables and selection of comparable sales. (See Gloude-mans [1999, chapter 3].) Smaller jurisdictions may find it sufficient to develop a single residential model. Commercial and income-producing properties should be stratified by property type. In general, separate models should be developed for apartment, warehouse/in-dustrial, and retail properties. Large jurisdictions may be able to stratify apartment properties further by type or area or to develop multiple commercial models. #### **4.2** The Cost Approach The cost approach is applicable to virtually all improved parcels and, if used properly, can produce highly accurate valuations. The cost approach is more reliable for newer structures of standard materials, design, and workmanship. Reliable cost data are imperative in any successful application of the cost approach. The data must be complete, typical, and current. Current construction costs should be based on the cost of replacing a structure with one of equal utility, using current materials, design, and building standards. Costs of individual construction components and building items should also be included in order to adjust for features that differ from the base specifications. These costs should be in-corporated into a construction cost manual and related computer software. The software can perform the valuation function, and the manual, in addition to providing documentation, can be used when nonautomated calculations are required. Construction cost schedules can be developed internally, based on a systematic study of local construction costs, obtained from firms specializing in such information, or custom generated by a contractor. Cost schedules should be verified for accuracy by applying them to recently constructed improvements of known cost. Construction costs also should be updated before each assessment cycle. One weakness in the cost approach tends to occur in the estimation of accrued depreciation. This estimate must be based on non-cost data (primarily sales) and can involve considerable subjectivity. Depreciation schedules can be extracted from sales data in several ways. Methods for extracting depreciation can be found in IAAO (1990, chapter 8) and Gloudemans (1999, chapter 4). Another key difficulty in use of the cost approach is determination of land value, which is estimated independently from sales (often from sales of improved property because sales of vacant land are scarce). Land values used in the cost approach must be current and consistent. Section 4.5 provides standards for land valuation in mass appraisal. #### 4.3 The Sales Comparison Approach The sales comparison approach estimates the value of a subject property by statistically analyzing the sale prices of similar properties. This approach is usually the preferred approach for estimating values for residential and other property types with adequate sales. Applications of the sales comparison approach include direct market models and comparable sales algorithms (See Gloudemans 1999, chapter 3 & 4, IAAO 1990, chapter 6 & 15, and IAAO 1999, and the IAAO Standard on Automated Valuation Models 2003). Comparable sales algorithms are most akin to single property appraisal applications of the sales comparison approach. They have the advantages of being familiar and easily explained and can compensate for less well specified or calibrated models, since the models are used only to make adjustments to the selected comparables. They can be problematic if the selected comparables are not well validated or representative of market value. Because they predict market value directly, direct market models depend more heavily on careful model specification and calibration. Their advantages include effi-ciency and consistency, since the same model is directly applied against all properties in the model area. Users of comparable sales algorithms should be aware that sales ratio statistics will be biased if sales used in the ratio study are used as comparables for themselves in model development. This problem can be avoided by (1) not using sales as comparables for themselves in modeling or (2) using holdout or later sales in ratio studies. #### 4.4 The Income Approach In general, for income-producing properties the income approach is the preferred valuation approach when reliable income and expense data are available, along with well-supported income multipliers, overall rates, and required rates of return on investment. Successful application of the income approach requires the collection, maintenance, and careful analysis of income and expense data. Mass appraisal applications of the income approach be-gin with collecting and processing income and expense data. (These data should be expressed on an appropriate per-unit basis; such as per square foot or per apart-ment unit.) Appraisers should then compute normal or "typical" gross incomes, vacancy rates, net incomes, and expense ratios. These figures can be used to judge the reasonableness of reported data for individual parcels and to estimate income and expense figures for parcels with unreported data. Alternatively, models for estimating gross or net income and expense ratios can be developed using actual income and expense data from a sample of properties and calibrated using multiple regression analysis. For an introduction to income modeling, see IAAO (1990, chapter 14) and Gloudemans (1999, chapter 3). The developed income figures can be capitalized into estimates of value in a number of ways. The most direct method involves the application of gross income multipliers, which express the ratio of market value to gross income. At a more refined level, net income multipliers or their reciprocals, overall capitalization rates, can be developed and applied. These multipliers and rates should always be extracted from actual income and sale price data obtained from properties that have recently been sold. Income multipliers and overall rates tend to provide reliable, consistent, and readily supported valuations when good sales and income data are available. #### 4.5 Land Valuation State or local laws may require the value of an improved parcel to be separated into land and improvement components. When the sales comparison or income approach is used, an independent estimate of land value must be made and subtracted from the total property value to obtain a residual improvement value. Some computerized valuation techniques provide a separation of total value into land and building components. Land values should be reviewed annually. At least once every four to six years the properties should be physically inspected and revalued. The sales comparison approach is the primary approach to land valuation and is always preferred when sufficient sales are available. In the absence of adequate sales, other techniques used in mass appraisal include allocation, abstraction, anticipated use, capitalization of ground rents, and land residual capitalization. (See IAAO [1990, chapter 7] and Gloudemans [1999, chapter 3].) #### 4.6 Considerations by Property Type The appropriateness of each valuation approach varies with the type of property under consideration. Table 1 ranks the relative usefulness of the three approaches in the mass appraisal of major types of properties. The table assumes that there are no major statutory barriers to obtaining cost, sales, and income data. Again, although certain approaches tend to produce better results for a given type of property, the use of two or more approaches should produce greater accuracy. #### 4.6.1 Single-Family Residential Property The sales comparison approach is the best approach for single-family residential property, including condominiums. Automated versions of this approach are highly efficient and generally accurate for the majority of these
properties. The cost approach is a good supplemental approach and should serve as the primary approach when the sales data available are inadequate. The income approach is usually inappropriate for mass appraisal of single-family residential properties, because most of these properties are not rented. #### 4.6.2 Multifamily Residential Property The sales comparison and income approaches are preferred in valuing multifamily residential property when sufficient sales and income data are available. Multiple regression analysis and related techniques have been successfully used in valuing this property type. Income multipliers can also be highly effective. As with other residential property, the cost approach is useful in pro-viding supplemental valuations and can serve as the primary approach when good sales and income data are not available. #### 4.6.3 Commercial and Industrial Property The income approach is the most appropriate method to apply when valuing commercial and industrial property if sufficient income data are available. Direct sales Table 1. Rank of typical usefulness of the three approaches to value in the mass appraisal of major types of property comparison models can be equally effective in large jurisdictions with sufficient sales. When a sufficient supply of sales data and income data is not available, the cost approach should be applied. However, values generated should be periodically checked against available sales data. Cost factors, land values, and depreciation schedules must be kept current through periodic review. | | Cost | Sales comparison approach | Income | |---------------------------|------|---------------------------|--------| | Single-family residential | 2 | 1 | 3 | | Multifamily residential | 3 | 1,2 | 1,2 | | Commercial | 3 | 2 | 1 | | Industrial | 1,2 | 3 | 1,2 | | Non-agricultural land | _ | 1 | 2 | | Agricultural* | _ | 2 | 1 | | Special-purpose** | 1 | 2,3 | 2,3 | ^{*}Includes farm, ranch, and forest properties. #### 4.6.4 Non-Agricultural Land The sales comparison approach is the preferred approach for non-agricultural land. Application of the sales comparison approach to vacant land involves the collection of sales data, the posting of sales data on maps, the calculation of standard unit values (such as value per square foot, per front foot, or per parcel) by area and type of land use, and the development of land valuation maps or computer-generated tables, in which the pattern of values is displayed. When vacant land sales are not available or are few, additional benchmarks can be obtained by subtracting the replacement cost new less depreciation of improvements from the sales prices of improved parcels. The success of this technique requires reliable cost data and tends to work best for relatively new improvements, for which depreciation is minimal. If neither vacant-parcel nor improved-parcel sales data are available, the assessor will need to apply allocation methods or use valuation methods that provide separate land and building values. Sometimes income approach applications can also be used. #### 4.6.5 Agricultural Property If adequate sales data are available and agricultural property is to be appraised at market value, the sales comparison approach would be preferred. However, nearly every state or province provides for use-value assessment (and usually appraisal), which significantly understates the market value for agricultural property, so the sales comparison approach is usually not applicable. Because of this limitation, it is imperative to obtain good income data and to use the income approach for agricultural land. Land rents are often available, sometimes permitting the development and application of overall capitalization rates. This method, of course, also entails the estimation of normal land rents for unrented parcels. When agricultural parcels include improvements, the cost approach or sales comparison models that provide separate building values may be used to determine their value. #### 4.6.6 Special-Purpose Property The cost approach tends to be most appropriate in the appraisal of special-purpose properties, due to the distinctive nature of such properties and the general absence of adequate sales or income data. #### 4.7 Frequency of Reappraisals Section 4.2.2 of the *Standard on Property Tax Policy* (IAAO 2010) states that current market value implies annual assessment of all property. Annual assessment does not necessarily mean, however, that each valuation must be reviewed or recomputed individually. Instead, trending factors based on criteria such as property type, location, size, and age can be developed and applied to groups of properties. These factors should be derived from ratio studies or other market analyses. ^{**}Includes institutional, governmental, and recreation properties Analysis of ratio study data can suggest groups or strata of properties in need of physical review. In general, trending factors can be highly effective in maintaining equity when appraisals are uniform within strata. However, such factors are not a substitute for physical reviews and individual reappraisals, which are required to correct lack of uniformity within strata. Although assessment trending can be effective for short periods, properties should be physically reviewed and individually reappraised at least every four to six years. This can be accomplished in at least three ways: - reappraising all property at periodic intervals (that is, every four to six years) - reappraising properties on a cyclical basis (for example, one-fourth or one-sixth each year) - reappraising on a priority basis as indicated by ratio studies or other considerations while still ensuring that all properties are physically reviewed at least every sixth year #### 5. Managerial Considerations 5.1 Overview Mass appraisal requires human, computing, and other resources to be well managed and appropriate appraisal and analytical methods need to be employed. In this section certain key managerial considerations are discussed. #### 5.2 Staffing A successful in-house appraisal program requires a sufficiently large staff composed of persons skilled in general administration and supervision, appraisal, mapping and drafting, data processing, and secretarial and clerical functions. Typical staffing sizes and patterns for jurisdictions of various sizes are illustrated in *Property Appraisal and Assessment Administration* (IAAO 1990, chapter 16). Unless efficiency or practical concerns dictate otherwise, persons performing the various mass appraisal functions should be employees of the assessor. When these functions are not performed by assessment staff, it is imperative that they be adequately provided by other departments, an oversight agency, a service bureau, a qualified contractor, or another source. Strong lines of communication must be established between the assessor's staff and the designated support groups. #### **5.3 Data Processing Support** Computer-assisted mass appraisals require considerable data processing support. (See the *Standard on Facilities, Equipment, Computers, and Supplies* [IAAO 2003].) #### 5.3.1 Hardware The hardware should be powerful enough to permit computerization of appropriate applications of the cost, sales comparison, and income approaches, as well as providing word processing, data inquiry, and activity summaries. The requirements for efficient running of desired software should be established before the acquisition of hardware. Computer equipment can be purchased, leased, rented, or shared with other jurisdictions. If the purchase option is chosen, the equipment should be easy to upgrade so that technological developments can be taken advantage of without purchasing an entirely new system. #### 5.3.2 Software Computer software can be developed internally, adapted from software developed by other public agencies, or purchased (in whole or in part) from private vendors. (Inevitably there will be some tailoring needed to adapt externally developed software to the requirements of the user's environment.) Each alternative has advantages and disadvantages. The software should be designed so that it can be easily modified; it should also be well documented, at both the appraiser/user and programmer levels. Security measures should exist to prevent unauthorized use and to provide backup in the event of accidental loss or destruction of data. #### 5.4 Contracting for Appraisal Services 5.4.1 Overview Reappraisal contracts can include mapping, data collection, data processing, and other services, as well as valuation. They offer the potential of acquiring professional skills and resources quickly. Often these skills and resources are not available internally. Contracting for these services can permit the jurisdiction to maintain a modest staff and to budget for reappraisal on a periodic basis, but also makes the assessor less likely to develop in-house expertise. (See the *Standard on Contracting for Assessment Services* [IAAO 2008].) #### 5.4.2 In-House Staff The assessor's staff must have confidence in the appraisals and be able to explain and defend them. This confidence begins with application of reliable appraisal techniques, generation of appropriate valuation reports, and review of preliminary values. It may be helpful to have reports that list each parcel, its characteristics, and its calculated value. Parcels with unusual characteristics, extreme values, or extreme changes in values should be identified for subsequent individual review. Equally important, summary reports should show average values, value changes, and ratio study statistics for various strata of properties. These should be reviewed to ensure the overall consistency of values for various types of property and various locations. (See the *Uniform Standards of Professional Appraisal Practice*, Standards Rule 6-7, for reporting requirements for mass appraisals [The Appraisal Foundation,
Appraisal Standards Board 2008–2009].) The staff should also be prepared to support individual valuations as required, preferably through comparable sales. At a minimum, staff should be able to produce a property record and explain the basic approach (cost, sales comparison, or income) used to estimate the value of the property. A property owner should never merely be told that "the computer" or "the system" produced the appraisal. Generally, the staff should tailor the explanation to the taxpayer's knowledge and expertise. Equations converted to tabular form can be used to explain the basis for valuation. Cost tables can be used to explain values based on the cost approach. In all cases, the assessor's staff should be able to produce sales or appraisals of similar properties in order to support (or at least explain) the valuation of the property in question. Comparable sales can be obtained from reports that list sales by such features as type of property, area, size, and age. Alternatively, interactive programs can be obtained or developed that identify and display the most comparable properties. Assessors should notify property owners of their valuations in sufficient time for property owners to discuss their appraisals with the assessor and appeal the value if they choose to do so (*Standard on Public Relations* [IAAO 2011]). Statutes should provide for a formal appeals process beyond the assessor's level (*Standard on Assessment Appeal* [IAAO 2001]). #### 5.5 Benefit-Cost Considerations 5.5.1 Overview The object of mass appraisal is to produce equitable valuations at low costs. Improvements in equity generally require increased expenditures. Benefit-cost analysis in mass appraisal involves two major issues, one of policy and the other of administration. #### 5.5.2 Policy Issues An assessment jurisdiction requires a certain expenditure level simply to inventory, list, and value properties. Beyond that point, additional expenditures make possible rapid improvements in equity initially, but marginal improvements in equity diminish as expenditure increases. At a minimum, jurisdictions should budget to meet statutory standards of equity. Refer to the *Standard on Ratio Studies* (IAAO 2010) for a listing of performance standards. #### 5.5.3 Administrative Issues Maximizing equity per dollar of expenditure is the primary responsibility of assessment administration. The assessor must provide leadership, make decisions, and get results by planning, budgeting, organizing, and controlling within all social, economic, and governmental limits (IAAO 1990, chapter 16). The computer-assisted mass appraisal system selected must be designed and used to evaluate appraisal performance and ensure compliance with laws, regulations, and policies. #### References The Appraisal Foundation, Appraisal Standards Board. 2008–2009. Uniform standards of professional appraisal practice. Washington, DC: The Appraisal Foundation. Gloudemans, R.J. 1999. Mass appraisal of real property. Chicago: International Association of Assessing Officers. Gloudemans, R.J., and R. Almy. 2011. Fundamentals of mass appraisal. Chicago: International Association of Assessing Officers. International Association of Assessing Officers. 1990. Property appraisal and assessment administration. Chicago: International Association of Assessing Officers. International Association of Assessing Officers. 2001. Standard on assessment appeal. Chicago: International Association of Assessing Officers. International Association of Assessing Officers. 2011. *Standard on public relations*. Chicago: International Association of Assessing Officers. International Association of Assessing Officers. 2008. Standard on contracting for assessment services. Chicago: International Association of Assessing Officers. International Association of Assessing Officers. 2009. Standard on digital cadastral maps and parcel identifiers. Chicago: International Association of Assessing Officers. International Association of Assessing Officers. 2003. Standard on facilities, computers, equipment, and supplies. Chicago: International Association of Assessing Officers. International Association of Assessing Officers. 2004. Standard on manual cadastral maps and parcel identifiers. Chicago: International Association of Assessing Officers. International Association of Assessing Officers. 2010. Standard on property tax policy. Chicago: International Association of Assessing Officers. International Association of Assessing Officers. 2010. Standard on ratio studies. Kansas City: International Association of Assessing Officers. National Research Council. 1983. *Procedures and standards for a multipurpose cadastre*. Washington, DC: National Research Council. Urban and Regional Information Systems Association and International Association of Assessing Officers. 1999. *GIS guidelines for assessors*. Park Ridge, IL, and Chicago: Urban and Regional Information Systems Association and International Association of Assessing Officers. #### **Suggested Reading** Cunningham, K. The use of LiDAR for change detection and updating of the CAMA database. *Journal of Property Tax Assessment & Administration*. Volume 4, Issue 3. International Association of Assessing Officers. 2000. Standard on professional development. Chicago: International Association of Assessing Officers. International Association of Assessing Officers. 2001. Standard on valuation of properties affected by environmental contamination. 2001. Chicago: International Association of Assessing Officers. International Association of Assessing Officers. 2005. Standard on the valuation of personal property. Kansas City: International Association of Assessing Officers. #### Glossary Abstraction Method—Method of land valuation in the absence of vacant land sales, whereby improvement values obtained from the cost model are subtracted from sales prices of improved parcels to yield residual land value estimates. Also called land residual technique. Accrued Depreciation—(1) The amount of depreciation, from any and all sources, that affects the value of the property in question on the effective date of the appraisal. (2) In accounting, the amount reserved each year or accumulated to date in the accounting system for replacement of a building or other asset. When depreciation is recorded as a dollar amount, it may be de-ductible from total plant value or investment to arrive at the rate base for public utilities. See also Depreciation. Acquisition Value—An assessed value based on the cost of acquiring the property; increases in this value are usually limited until the next qualifying sale. Adaptive Estimation Procedure (AEP)—A computerized, iterative, self-referential procedure using properties for which sales prices are known to produce a model that can be used to value properties for which sales prices are not known. Also called "feedback." Adjusted Sale Price—The sale price that results from adjustments made to the stated sale price to account for the effects of time, personal property, financing, or the like. Adjustments—Modifications in the reported value of a variable, such as sale price or gross income. For example, adjustments can be used to estimate market value in the sales comparison approach by adjusting the sale price of the comparable for differences between comparable and subject properties. Ad Valorem Tax—A tax levied in proportion to the value of the thing(s) being taxed. Aerial Photograph—A photograph of a part of the earth's surface taken by an aircraft-supported camera. Agricultural Property—Improved or unimproved land devoted to or available for the production of crops or other agricultural products, livestock, and agricultural support buildings. Allocation Method—A method used to value land, in the absence of vacant land sales, by using a typical ratio of land to improvement value. Also called land ratio method. Appraisal Foundation, The—The organization authorized by the United States Congress as the source of appraisal standards and appraiser qualifications. Appraisal Ratio—(1) The ratio of the appraised value to an indicator of market value. (2) By extension, an estimated fractional relationship between the appraisals and market values of a group of properties. See also Level of Appraisal. Appraisal Ratio Study—A ratio study using independent expert appraisals as indicators of market value. Arm's-Length Sale—A sale between two unrelated parties, both seeking to maximize their positions from the transaction. Assessment Cycle—A legally sanctioned reappraisal period generally ranging from one to ten years. Assessment Date—The status date for tax purposes. Appraised values reflect the status of the property and any partially completed construction as of this date. Assessment Equity—The degree to which assessments bear a consistent relationship to market value. Assessment Level—The common, or overall, ratio of assessed values to market values. Assessment Maps—See Cadastral Map. Assessment Ratio—(1) The fractional relationship an assessed value bears to the market value of the property in question. (2) By extension, the fractional relationship the total of the assessment roll bears to the total market value of all taxable property in a jurisdiction. See Level of Assessment. Assessment Ratio Study—An investigation intended to determine the assessment ratio and assessment equity. Assessment Ratio—(1) The fractional relationship an assessed value bears to the market value of the property in question. (2) By extension, the fractional relationship the total of the assessment roll bears to the total market value of all taxable property in a jurisdiction. See Level of Assessment. Assessment Ratio Study—An investigation intended to determine the assessment ratio and assessment equity. Audit—A systematic investigation or appraisal of procedures or operations for the purpose of determining conformity with specifically prescribed criteria. Audit,
Performance—An analysis of an organization to determine whether or not the quantity and quality of work performed meets standards. Ratio studies are an important part of performance audits of an assessing organization. Audit, Procedural—An examination of an organization to determine whether established or recommended procedures are being followed. Audit Program—The procedures undertaken or particular work done by an accountant in conducting an examination. Audit Trail—A set of records of the changes made to another set of records. Automated Valuation Model—A computer program for property valuation that analyzes data using an automated process. See also Computer-assisted Mass Appraisal. Base Year Value—In a nonmarket-value assessment system, the assessed value established as of a specific year. Benchmark—(1) A term used in land surveying to mean a known point of reference. (2) In property appraisal, a property of known value and of known effective age and replacement cost. (3) By extension, a model property to be used in determining by comparison the grade or quality class of other properties. Cadastral Map—A scale map displaying property ownership boundaries and showing the dimensions of each parcel with related information such as parcel identifier, survey lines, and easements. Calibration—The process of estimating the coefficients in a mass appraisal model. **CAMA—See Computer-assisted Mass Appraisal.** Capitalization Rate—Any rate used to convert an estimate of future income to an estimate of market value; the ratio of net operating income to market value. Capitalization of Ground Rents—A method of estimating land value in the absence of comparable sales; applicable where there is an income stream; for example, to farmland and commercial land leased on a net basis. Class—A set of items defined by common characteristics. (1) In property taxation, property classes such as residential, agricultural, and industrial may be defined. (2) In assessment, building classification systems based on type of building design, quality of construction, or structural type are common. (3) In statistics, a pre-defined category into which data may be put for further analysis. For example, ratios may be grouped into the following classes: less than 0.500, 0.500 to 0.599, 0.600 to 0.699, and so forth. Coding—(1) The act of reducing a description of a unique object, such as a parcel of real estate, to a set of one or more measures or counts of certain of its characteristics, such as square footage, number of bathrooms, and the like. (2) Encoding, a related term, is usually used to refer to the act of translating coded descriptions useful to human beings into a form that can be processed by computers. (3) Coding is sometimes also used to refer to the writing of instructions that direct the processing done by computers. Coefficient—(1) In a mathematical expression, a number or letter preceding and multiplying another quantity. For example, in the expression, 5X, 5 is the coefficient of X, and in the expression aY, a is the co- efficient of Y. (2) A dimensionless statistic, useful as a measure of change or relationship; for example, correlation coefficient. Commercial Property—Generally, any nonindustrial, nonresidential realty of a commercial enterprise. Includes realty used as a retail or wholesale establishment, hotel or motel, service station, commercial garage, warehouse, theater, bank, nursing home, and the like. Comparable Sales; Comparables—(1) Recently sold properties that are similar in important respects to a property being appraised. The sale price and the physical, functional, and locational characteristics of each of the properties are compared to those of the property being appraised in order to arrive at an estimate of value. (2) By extension, the term "comparables" is sometimes used to refer to properties with rent or income patterns comparable to those of a property being appraised. Comparative Unit Method—(1) A method of appraising land parcels in which an average or typical value is estimated for each stratum of land. (2) A method of estimating replacement cost in which all the direct and indirect costs of a structure (except perhaps architect's fees) are aggregated and specified with reference to a unit of comparison such as square feet of ground area or floor area, or cubic content. Separate factors are commonly specified for different intervals of the unit of comparison and for different story heights, and separate schedules are commonly used for different building types and quality classes. Computer-assisted Assessment System—A system for assessing real and personal property with the assistance of a computer. A computer may be used, for example, in the appraisal process, in keeping track of ownership and exemption status, in printing the assessment roll, in coordinating the work load of real property appraisers and personal property appraisers with respect to the assessment of commercial and industrial properties, and in a number of other areas. Computer-assisted Mass Appraisal (CAMA)—A system of appraising property, usually only certain types of real property, that incorporates computer-supported statistical analyses such as multiple regression analysis and adaptive estimation procedure to assist the appraiser in estimating value. Cost—The money expended in obtaining an object or attaining an objective; generally used in appraisal to mean the expense, direct and indirect, of constructing an improvement. Cost Approach—(1) One of the three approaches to value, the cost approach is based on the principle of substitution—that a rational, informed purchaser would pay no more for a property than the cost of building an acceptable substitute with like utility. The cost approach seeks to determine the replacement cost new of an improvement less depreciation plus land value. (2) The method of estimating the value of property by (a) estimating the cost of construction based on replacement or reproduction cost new or trended historic cost (often adjusted by a local multiplier), (b) subtracting depreciation, and (c) adding the estimated land value. The land value is most frequently determined by the sales comparison approach. Cost Schedules—Charts, tables, factors, curves, equations, and the like intended to help estimate the cost of replacing a structure from a knowledge of some other factors, such as its quality class and number of square feet. Data—The general term for masses of numbers, codes, and symbols. "Data" is the plural of datum, one element of data. Data Edit—The process of examining recorded data to ensure that each element of data is reasonable and is consistent with others recorded for the same object, such as a parcel of real estate. Data editing, which may be done by persons or by computer, is essentially a mechanical process, distinct from verifying the correctness of the recorded information by calling or writing property owners. Data Management—The human (and sometimes computer) procedures employed to ensure that no information is lost through negligent handling of records from a file, that all information is properly supplemented and up-to-date, and that all information is easily accessible. Depreciation—Loss in value of an object, relative to its replacement cost new, reproduction cost new, or original cost, whatever the cause of the loss in value. Depreciation is sometimes subdivided into three types: physical deterioration (wear and tear), functional obsolescence (suboptimal design in light of current technologies or tastes), and economic obsolescence (poor location or radically diminished demand for the product). See also Accrued Depreciation. Depreciation Schedules—Tables used in mass appraisal that show the typical loss in value at various ages or effective ages for different types of properties. Discount Rate—The rate of return on investment; the rate an investor requires to discount future income to its present worth. Economic Area—A geographic area, typically encompassing a group of neighborhoods, defined on the basis that the properties within its boundaries are more or less equally subject to a set of one or more economic forces that largely determine the value of the properties in question. Equity—(1) In assessment, the degree to which assessments bear a consistent relationship to market value. Measures include the coefficient of dispersion, coefficient of variation, and price-related differential. (2) In popular usage, a synonym for tax fairness. (3) In ownership, the net value of property after liens and other charges have been subtracted. Expense Ratios—The ratio of expenses to gross income. Factor—(1) An underlying characteristic of something (such as a house) that may contribute to the value of a variable (such as its sale price), but is observable only indirectly. For example, construction quality is a factor defined by workmanship, spacing of joists, and materials used. Factor definition and measurement may be done subjectively or by a computer-assisted statistical algorithm known as factor analysis. (2) Loosely, any characteristic used in adjusting the sales prices of comparables. (3) The reciprocal of a rate. Assessments may be equalized by multiplying them by a factor equal to the reciprocal of the assessment ratio, and value can be estimated using the income approach by multiplying income by a factor equal to the reciprocal of the discount rate. Feedback—See Adaptive Estimation Procedure. Front Foot—The unit or standard of linear measure used in measuring frontage. Geographic Information System (GIS)—(1) A database management system used to store, retrieve, manipulate, analyze, and display spatial information. (2) One type of computerized mapping system capable of integrating spatial data (land information) and attribute data among different layers on a base map. Gross Income—The payments to an owner that a prop-erty can generate before expenses are deducted. Gross Income
Multiplier—A capitalization technique that uses the ratio between the sale price of a property and its potential gross income or its effective gross income. Improvements—Buildings, other structures, and attachments or annexations to land that are intended to remain so attached or annexed, such as sidewalks or sewers. Income Approach—One of the three approaches to value, based on the concept that current value is the present worth of future benefits to be derived through income production by an asset over the remainder of its economic life. The income approach uses capitalization to convert the anticipated benefits of the ownership of property into an estimate of present value. Industrial Property—Generally, any property used in a manufacturing activity, such as a factory, wholesale bakery, food processing plant, mill, mine, or quarry. Integrity—The quality of a data element or program being what it says it is; usually distinguished from validity, the quality of its being what it should be in terms of some ultimate purpose. After data are edited and encoded and programs are prepared, their integrity is ensured by safeguards that prevent accidental or unauthorized tampering with them. Land—(1) In economics, the surface of the earth and all the natural resources and natural productive powers over which possession of the earth's surface gives man control. (2) In law, a portion of the earth's surface, together with the earth below it, the space above it, and all things annexed thereto by nature or by man. See also Improvements. Land Residual Technique—See Abstraction Method. Legal Description—A delineation of dimensions, boundaries, and relevant attributes of a real property parcel that serve to identify the parcel for all purposes of law. The description may be in words or codes, such as metes and bounds or coordinates. For a subdivided lot, the legal description would probably include lot and block numbers and subdivision name. Level of Appraisal—The common, or overall, ratio of appraised values to market values. Three concepts are usually of interest: the level required by law, the true or actual level, and the computed level, based on a ratio study. Level of Assessment; Assessment Ratio—The common or overall ratio of assessed values to market values. Compare Level of Appraisal. Note: The two terms are sometimes distinguished, but there is no convention determining their meanings when they are. Three concepts are commonly of interest: what the assessment ratio is legally required to be, what the assessment ratio actually is, and what the assessment ratio seems to be, on the basis of a sample and the application of inferential statistics. When level of assessment is distinguished from assessment ratio, "level of assessment" usually means either the legal requirement or the true ratio, and "assessment ratio" usually means the true ratio or the sample statistic. Linear Regression—A kind of statistical analysis used to investigate whether a dependent variable and a set of one or more independent variables share a linear correlation and, if they do, to predict the value of the dependent variable on the basis of the values of the other variables. Regression analysis of one dependent variable and only one independent variable is called simple linear regression, but it is the word simple (not linear) that distinguishes it from multiple regression analysis with its multiple independent variables. Location—The numerical or other identification of a point (or object) sufficiently precise so the point can be situated. For example, the location of a point on a plane can be specified by a pair of numbers (plane coordinates) and the location of a point in space can be specified by a set of three numbers (space coordinates). However, location may also be specified in other terms than coordinates. A location may be specified as being at the intersection of two specific lines by identifying it with some prominent and known feature (for example, "on top of Pikes Peak" or "at the junction of the Potomac and Anacostia Rivers"). Map—A conventional representation, usually on a plane surface and at an established scale, of the physical features (natural, artificial, or both) of a part or the whole of the earth's surface. Features are identified by means of signs and symbols, and geographical orientation is indicated. Map, Tax—A map drawn to scale and delineated for lot lines or property lines or both, with dimensions or areas and identifying numbers, letters, or names for all delineated lots or parcels. Market—(1) The topical area of common interest in which buyers and sellers interact. (2) The collective body of buyers and sellers for a particular product. Market Adjustment Factors—Market adjustment factors, reflecting supply and demand preferences, are often required to adjust values obtained from the cost approach to the market. These adjustments should be applied by type of property and area and are based on sales ratio studies or other market analyses. Accurate cost schedules, condition ratings, and depreciation schedules will minimize the need for market adjustment factors. Market Analysis—A study of real estate market conditions for a specific type of property. Market Area—See Economic Area. Market Value—Market value is the major focus of most real property appraisal assignments. Both economic and legal definitions of market value have been developed and refined. A current economic definition agreed upon by agencies that regulate federal financial institutions in the United States is: The most probable price (in terms of money) which a property should bring in a competitive and open market under all conditions requisite to a fair sale, the buyer and seller each acting prudently and knowledgeably, and assuming the price is not affected by undue stimulus. Implicit in this definition is the consummation of a sale as of a specified date and the passing of title from seller to buyer under conditions whereby: The buyer and seller are typically motivated; Both parties are well informed or well advised, and acting in what they consider their best interests; A reasonable time is allowed for exposure in the open market; Payment is made in terms of cash in United States dollars or in terms of financial arrangements comparable thereto; The price represents the normal consideration for the property sold unaffected by special or creative financing or sales concessions granted by anyone associated with the sale. Market-Value Standard—A requirement of law or practice that the assessment ratio of all properties be equal to one. Two issues are implicit here: that fractional assessment levels be avoided and that all property be assessed on the basis of its market value and not on the basis of its value in some particular use—for example, agriculture—unless that use is the only use to which the property can legally be put (in which case its use value would be equal to its market value). Mass Appraisal—The process of valuing a group of properties as of a given date, using standard methods, employing common data, and allowing for statistical testing. Mass Appraisal Model—A mathematical expression of how supply and demand factors interact in a market. Model—(1) A representation of how something works. (2) For purposes of appraisal, a representation (in words or an equation) that explains the relationship between value or estimated sale price and variables representing factors of supply and demand. Model Area—See Economic Area. Model Calibration—The development of adjustments, or coefficients, based on market analysis, that identifies specific factors with an actual effect on market value. Model Specification—The formal development of a model in a statement or equation, based on data analysis and appraisal theory. Multiple Regression, Multiple Regression Analysis (MRA)—A particular statistical technique, similar to correlation, used to analyze data in order to predict the value of one variable (the dependent variable), such as market value, from the known values of other variables (called "independent variables"), such as lot size, number of rooms, and so on. If only one independent variable is used, the procedure is called simple regression analysis and differs from correlation analysis only in that correlation measures the strength of relationship, whereas regression predicts the value of one variable from the value of the other. When two or more variables are used, the procedure is called multiple regression analysis. See Linear Regression. Neighborhood—(1) The environment of a subject property that has a direct and immediate effect on value. (2) A geographic area (in which there are typically fewer than several thousand properties) defined for some useful purpose, such as to ensure for later multiple regression modeling that the properties are homogeneous and share important locational characteristics. Net Income—The income expected from a property after deduction of allowable expenses. Net Income Multiplier—A factor expressing the relationship between value and net operating income; the reciprocal of the overall rate. Objective—The quality of being definable by specific criteria without the need for judgment. Open Market—A freely competitive market in which any buyer or seller may trade and in which prices are determined by competition. Overall Rate (OAR)—A capitalization rate that blends all requirements of discount, recapture, and effective tax rates for both land and improvements; used to convert annual net operating income into an indicated overall property value. Parcel—A contiguous area of land described in a single legal description or as one of a number of lots on a plat; separately owned, either publicly or privately; and capable of being separately conveyed. Parcel Identifier—A code, usually numerical, representing a specific land parcel's legal description. The purpose of parcel identifiers is to permit reference to legal descriptions
by using a code of uniform and manageable size, thereby facilitating record-keeping and handling. Also called parcel identification number. Personal Property—Consists of every type of property that is not real property. Personal property is movable without damage to itself or the real estate and is subdivided into tangible and intangible. Price, Adjusted Sale—The sale price that results from adjustments made to the stated sale price to account for the effects of time, personal property, atypical financing, and the like. Price, Market—The value of a unit of goods or service, expressed in terms of money, as established in a free and open market. Note: This term is sometimes distinguished from "market value" on the ground that the latter term assumes that buyers and sellers are informed, but this assumption is also implied by the phrase "free and open market." Compare Price, Sale. Price, Sale—(1) The actual amount of money exchanged for a unit of goods or services, whether or not established in a free and open market. An indicator of market value. (2) Loosely used synonymously with "offering" or "asked" price. Note: The sale price is the "selling price" to the vendor and the "cost price" to the vendee. Property—(1) An aggregate of things or rights to things. These rights are protected by law. There are two basic types of property: real and personal. (2) The legal interest of an owner in a parcel or thing. Property Record Card (Form)—An assessment document with blanks for the insertion of data for property identification and description, for value estimation, and for property owner satisfaction. The basic objectives of property record forms are, first, to serve as a repository of most of the information deemed necessary for identifying and describing a property, valuing a property, and assuring property owners that the assessor is con- versant with their properties, and, second, to document property appraisals. Use of properly designed property record forms permits an organized and uniform approach to amassing a property inventory. Ratio, Assessment—See Assessment Ratio. Ratio Study—A study of the relationship between appraised or assessed values and market values. Indicators of market values may be either sales (sales ratio study) or independent "expert" appraisals (appraisal ratio study). Of common interest in ratio studies are the level and uniformity of the appraisals or assessments. See also Level of Appraisal and Level of Assessment. RCN—Replacement cost new or reproduction cost new. RCNLD—Replacement cost new less depreciation or reproduction cost new less depreciation. Real Estate—The physical parcel of land and all improvements permanently attached. Compare Real Property. Real Property—Consists of the interests, benefits, and rights inherent in the ownership of land plus anything permanently attached to the land or legally defined as immovable; the bundle of rights with which ownership of real estate is endowed. To the extent that "real estate" commonly includes land and any permanent improvements, the two terms can be understood to have the same meaning. Also called "realty." Reappraisal—The mass appraisal of all property within an assessment jurisdiction accomplished within or at the beginning of a reappraisal cycle (see below, sense 2). Also called revaluation or reassessment. Reappraisal Cycle—(1) The period of time necessary for a jurisdiction to have a complete reappraisal. For example, a cycle of five years occurs when one-fifth of a jurisdiction is reappraised each year and also when a jurisdiction is reappraised all at once every five years. (2) The maximum interval between reappraisals as stated in laws. Reassessment—(1) The relisting and revaluation of all property, or all property of a given class, within an assessment district by order of an authorized officer or body after a finding by such an officer or body that the original assessment is too faulty for correction through the usual procedures of review and equalization. (2) The revaluation of all real property by the regularly constituted assessing authorities, as distinguished from assessment on the basis of valuations most or all of which were established in some prior year. See also Revaluation. Reciprocal—The result obtained when 1 is divided by a given number. Reconciliation—The final step in the valuation process wherein consideration is given to the relative strengths and weaknesses of the three approaches to value, the nature of the property appraised, and the quantity and quality of available data in formation of an overall opinion of value (either a single point estimate or a range of value). Also termed "correlation" in some texts. Regression Analysis—See Multiple Regression Analysis. Reliability—The degree to which measures are free from random error and therefore yield consistent results; the extent to which a procedure yields consistent results on repeated trials. Replacement Cost; Replacement Cost New—The cost, including material, labor, and overhead, that would be incurred in constructing an improvement having the same utility to its owner as a subject improvement, without necessarily reproducing exactly any particular characteristics of the subject. The replacement cost concept implicitly eliminates all functional obsolescence from the value given; thus, only physical depreciation and economic obsolescence need to be subtracted to obtain replacement cost new less depreciation (RCNLD). Replacement Cost New Less Depreciation (RCLD)— In the cost approach, replacement cost new less physical incurable depreciation. Reproduction Cost; Reproduction Cost New—The cost of constructing a new property, reasonably identical (having the same characteristics) with the given property except for the absence of physical depreciation, using the same materials, construction standards, design, and quality of workmanship, computed on the basis of prevailing prices and on the assumption of normal competency and normal conditions. Residential Property—Property used for housing such as single-family residences, duplexes, or apartment buildings. Residual—The difference between an observed value and a predicted value for a dependent variable. Residual Technique—A method of arriving at the unknown value of a property component by subtracting the known values of other components from a known overall value. Revaluation—A reappraisal of property; especially a complete reappraisal of real property after assessment for one or more years on valuations most (or all) of which were established in some prior year. Compare Reassessment and Reappraisal. Review—(1) Consideration by a board of appeals, a board of equalization, a board of review, or a court, of individual, property class, or district assessments, whether for the purpose of adding omitted taxable property, removing exempt property, or equalizing the valuations placed on listed property. (2) The act or process of critically studying a report, such as an appraisal, prepared by another. Sale, Arm's-Length—A sale in the open market between two unrelated parties, each of whom is reason-ably knowledgeable of market conditions and under no undue pressure to buy or sell. Sale Price—See Price, Sale; Price, Adjusted Sale. Sales Comparison Approach—One of three approaches to value, the sales comparison approach estimates a property's value (or some other characteristic, such as its depreciation) by reference to comparable sales. Sales Data—(1) Information about the nature of the transaction, the sale price, and the characteristics of a property as of the date of sale. (2) The elements of information needed from each property for some purpose, such as appraising properties by the direct sales comparison approach. Sales File—A file of sales data. Sales Ratio Study—A ratio study that uses sales prices as proxies for market values. Schedules—Tables, equations, or some other means of presenting the relationship between the values of two or more variables that are functionally related. For example, cost schedules present the relationship between cost per square foot and living area for a number of quality classes, building heights, and other characteristics Single-Property Appraisal—Systematic appraisal of properties one at a time. Site—The location of a person, thing, or event. Site Characteristics—(1) Characteristics of (and data that describe) a particular property, especially land size, shape, topography, drainage, and so on, as opposed to location and external economic forces. Software—(1) Computer programs. (2) Those parts of a computer system that are not machinery or circuits; procedures and possibly documentation are included along with programs. Special-Purpose Property—A property adapted for a single use. Standard 6—See Uniform Standards of Professional Appraisal Practice. Stratify—To divide, for purposes of analysis, a sample of observations into two or more subsets according to some criterion or set of criteria. Stratum, Strata (pl.)—A class or subset that results from stratification. Subclass—A group of properties within a class, smaller than the class, usually (although not necessarily) defined by stratification rather than by sampling. Subject Property—The property being appraised. Subjective—Having the quality of requiring judgment in arriving at an appropriate answer of value of a variable (such as the quality class of a structure). Three Approaches to Value—A convenient way to group the various methods of appraising a property. The cost approach encompasses several methods for estimating replacement cost new of an improvement less depreciation plus land value. The sales comparison approach estimates values by comparison with similar properties for which sales prices are known. The methods included in the income approach are based on the assumption that value equals the present worth of the rights to future income. Time-adjusted Sale Price—The price at which a property sold, adjusted for the
effects of price changes reflected in the market between the date of sale and the date of analysis. Trending—Adjusting the values of a variable for the effects of time. Usually used to refer to adjustments of assessments intended to reflect the effects of inflation and deflation and sometimes also, but not necessarily, the effects of changes in the demand for microlocational goods and services. Trending Factor—A figure representing the increase in cost or selling price over a period of time. Trending accounts for the relative difference in the value of a dollar between two periods. Uniformity—The equality of the burden of taxation in the method of assessment. Uniform Standards of Professional Appraisal Practice—Annual publication of the Appraisal Standards Board of The Appraisal Foundation: "These Standards deal with the procedures to be followed in performing an appraisal, appraisal review, or appraisal consulting service and the manner in which an appraisal, appraisal review, or appraisal consulting service is communicated. ... Standard 6 establishes requirements for the development and reporting of mass appraisals of a universe of properties for ad valorem tax purposes or any other intended use" (The Appraisal Foundation, Appraisal Standards Board 2002, Preamble, p. 6). Unit of Comparison—A property as a whole or some smaller measure of the size of the property used in the sales comparison approach to estimate a price per unit. Use Class—(1) A grouping of properties based on their use rather than, for example, their acreage or construction. (2) One of the following classes of property: single-family residential, multifamily residential, agricultural, commercial, industrial, vacant land, and institutional/exempt. (3) Any subclass refinement of the above—for example, townhouse, detached single-family, condominium, house on farm, and so on. Use Value—(1) The value of property in a specific use. (2) Property entirely used for a specific purpose or use that may entitle the property to be assessed at a different level than others in the jurisdiction. Examples of properties that may be assessed at use value under the statutes include agricultural land, timberland, and historical sites. USPAP—See Uniform Standards of Professional Appraisal Practice. Valuation—(1) The process of estimating the value— market, investment, insured, or other properly defined value—of a specific parcel or parcels of real estate or of an item or items of personal property as of a given date. (2) The process or business of appraising, of making estimates of the value of something. The value usually required to be estimated is market value. Valuation Date—The specific date as of which assessed values are set for purposes of property taxation. This date may also be known as the "date of finality." See also Assessment Date. Valuation Model—A representation in words or in an equation that explains the relationship between value or estimated sale price and variables representing factors of supply and demand. Value—(1) The relationship between an object desired and a potential owner; the characteristics of scarcity, utility, desirability, and transferability must be present for value to exist. (2) Value may also be described as the present worth of future benefits arising from the ownership of real or personal property. (3) The estimate sought in a valuation. (4) Any number between positive infinity and negative infinity. See also Market Value. Variable—An item of observation that can assume various values, for example, square feet, sales prices, or sales ratios. Variables are commonly described using measures of central tendency and dispersion. Verify—To check the accuracy of something. For example, sales data may be verified by interviewing the purchaser of the property, and data entries may be verified by check digits. ## **Assessment Standards of the International Association of Assessing Officers** Guide to Assessment Administration Standards Standard on Assessment Appeal Standard on Automated Valuation Models Standard on Contracting for Assessment Services Standard on Digital Cadastral Maps and Parcel Identifiers Standard on Facilities, Computers, Equipment, and Supplies Standard on Manual Cadastral Maps and Parcel Identifiers Standard on Mass Appraisal of Real Property Standard on Oversight Agency Responsibilities Standard on Professional Development Standard on Property Tax Policy Standard on Public Relations Standard on Ratio Studies Standard on Valuation of Personal Property Standard on Valuation of Property Affected by Environmental Contamination Standard on Verification and Adjustment of Sales To download the current approved version of any of the standards listed above, go to: http://www.iaao.org/publications/standards.html # Standard on Ratio Studies **Approved January 2010** #### INTERNATIONAL ASSOCIATION OF ASSESSING OFFICERS The assessment standards set forth herein represent a consensus in the assessing profession and have been adopted by the Executive Board of the International Association of Assessing Officers. The objective of these standards is to provide a systematic means by which concerned assessing officers can improve and standardize the operation of their offices. The standards presented here are advisory in nature and the use of or compliance with such standards is purely voluntary. If any portion of these standards is found to be in conflict with the Uniform Standards of Professional Appraisal Practice (USPAP) or state laws, USPAP and state laws shall govern. #### **Acknowledgements** At the time of the adoption of the standard by the IAAO Executive Board, the IAAO Technical Standards Committee was composed of Chair Joe Hapgood, CAE; Nancy C. Tomberlin; Bill Marchand; Robert Gloudemans; and Mary Reavey. The majority of revisions were done in 2009. At that time the IAAO Technical Standards Committee was composed of Chair Nancy C. Tomberlin; Joe Hapgood, CAE; Alan S. Dornfest, AAS; Bill Marchand; and Mary Reavey. The standard benefited from recommendations and thorough review by Peter Davis, Dennis Donner; Wayne D. Llewellyn, CAE; Ruth Sorenson; and Robert Denne. #### **Revision Notes** The last full revision of the Standard on Ratio Studies was in July 2007. The most recent partial revisions were made to the following sections: Part 1—3.5, 9.1 Part 2—3.5, 10 References Appendix A—A.5 Appendix B—B.1 Published by International Association of Assessing Officers 314 W 10th St Kansas City, Missouri 64105-1616 816/701-8100 Fax: 816/701-8149 http://www.iaao.org ISBN 978-0-88329-195-5 Copyright © 2010 by the International Association of Assessing Officers All rights reserved. No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher. However, assessors wishing to use this standard for educating legislators and policymakers may photocopy it for limited distribution. ### **Contents Standard on Ratio Studies** | | Part 1. Guidance for Local Jurisdictions | 7 | |-------------------|---|----------| | | 1. Scope | 7 | | | 2. Overview | 7 | | | 2.1 The Concepts of Market Value and Appraisal Accuracy | | | | 2.2 Aspects of Appraisal Performance | 7 | | | 2.3 Uses of Ratio Studies | 7 | | 2.4 Applicability | | | | | 3. Steps in Ratio Studies | 8 | | | 3.1 Definition of Purpose, Scope and Objectives | 8 | | | 3.2 Design | 8 | | | 3.2.1 Level of Sophistication and Detail | 8 | | | 3.2.2 Sampling | | | | 3.2.2.1 Limitations of Sale Samples | | | | 3.2.2.2 Data Accuracy and Integrity | 8 | | | 3.3 Stratification | | | | 3.4 Collection and Preparation of Market Data | 9 | | | 3.5 Matching of Appraisal and Market Data (rev. Jan-2010) | 9 | | | 3.6 Statistical Analysis | | | | 3.7 Evaluation and Use of Results | | | | 4. Timing and Sample Selection | | | | 4.1 Data Requirements and Availability | | | | 4.1.1 Nature of the Population | | | | 4.1.2 Assessment Information | | | | 4.1.3 Indicators of Market Value | | | | 4.1.4 Property Characteristics | 10 | | | 4.2 Frequency of Ratio Studies | 10
10 | | | 4.4 Period from Which Sales Are Drawn | | | | 4.5 Sample Representativeness | | | | 4.6 Acquisitions and Validation of Sales Data | 11 | | | • | | | | 5. Ratio Study Statistics and Analyses | 11 | | | 5.1 Data Displays | 11 | | | 5.2 Outlier Ratios | 12 | | | 5.3 Measures of Appraisal Level | | | | 5.3.2 Arithmetic Mean | | | | 5.3.3 Weighted Mean | | | | 5.3.4 Contrasting Measures of Appraisal Level | | | | 5.4 Measures of Variability | | | | 5.4.1 Coefficient of Dispersion | | | | 5.4.2 Other Measures of Variability | | | | 5.5 Measures of Reliability | | | | 5.6 Vertical Inequities | 14 | | | 5.7 Tests of Hypotheses | | | | 5.8 The Normal Distribution | | | | 5.9 Parametric and Distribution-Free (Nonparametric) Statistics | 15 | | | 6. Sample Size | 15 | | | 6.1 Importance of Sample Size | | | | 6.2 Adequacy of a Given Sample Size | 15 | | | 6.3 Required Sample Size | 15 | | | 6.4 Remedies for Inadequate Samples | | | | 6 5 Other Sample Size Related Representativeness Problems | 16 | | 7. Reconciliation of Ratio Study Performance Measures | 16 | |--|----| | 8. Presentation of Findings, Documentation, and Training | 16 | | 8.1 Text | | | 8.2 Exhibits | | | 8.3 Analyses and Conclusions | | |---|----------| | 8.4 Documentation | 17 | | 8.5 Training and Education | 17 | | 9. Ratio Study Standards | 17 | | | | | 9.1 Level of Appraisal (rev. Jan-2010) | | | 9.1.1 Purpose of Level-of-Appraisal Standard 9.1.2 Confidence Intervals in Conjunction with Performance Standards | | | 9.2 Appraisal Uniformity | | | 9.2.1 Uniformity among Strata. | | | 9.2.2 Uniformity among Single-Family Residential Properties | 10
18 |
 9.2.3 Uniformity among Income-Producing Properties | | | 9.2.4 Uniformity among Unimproved Properties | 19 | | 9.2.5 Uniformity among Rural Residential and Seasonal Properties, | | | Manufactured Housing, and Multifamily Dwellings | 19 | | 9.2.6 Uniformity among Other Properties | 19 | | 9.2.7 Vertical Equity | 19 | | 9.2.8 Alternative Uniformity Standards | 19 | | 9.3 Natural Disasters and Ratio Study Standards | | | · | | | 10.Personal Property Ratio Studies | 19 | | | | | Part 2. Equalization and Performance Monitoring | 21 | | | | | 1. Scope | 21 | | 2. Oversight Ratio Studies | 21 | | 2.1 Monitoring of Appraisal Performance | | | 2.2 Equalization | | | 2.2.1 Direct Equalization | | | 2.2.2 Indirect Equalization | | | - | | | 3. Steps in Ratio Studies | | | 3.1 Definition of Purpose, Scope and Objectives | 22 | | 3.2 Design of Study | 22 | | 3.2.1 Level of Sophistication and Detail | | | 3.2.2 Sampling | 23 | | 3.2.3 Determining the Composition of Samples | | | 3.2.3.1 Sale Samples | 23 | | 3.2.3.2 Independent Appraisal Samples | | | 3.2.3.3 Samples Combining Sales and Independent Appraisals | | | 3.3 Collection and Preparation of Market Data | | | 3.4 Stratification | | | 3.5 Matching of Appraisal Data and Market Data (rev. Jan-2010) | | | 3.5.1 Stratification for Equalization Studies | | | 3.5.2 Stratification for Direct Equalization | | | 3.5.3 Stratification for Indirect Equalization | | | 3.6 Statistical Analysis | 25
25 | | 3.7 Evaluation and Use of Results | 25 | | 4. Timing and Sample Selection | 25 | | 4.1 Date of Analysis | 25 | | 4.2 Representativeness of Samples | 25 | | 4.2.1 Maximizing Representativeness with Independent Appraisals | | | 4.2.2 Very-High-Value Properties | | | | | | 5. Acquisition and Analysis of Sales Data | | | 5.1 Sale Adjustments for Statutorily Imposed Value Constraints | | | 5.2 Outlier Ratios | | | | 27 | | 5.2.2 Outlier Trimming | 27 | |---|----| | 6. Ratio Study Statistics and Analyses | 27 | | 6.1 Measures of Appraisal Level | | | 6.2 Overall Ratio for Combined Strata | | | 6.3 Contrasting Measures of Appraisal Level | 28 | | | | | | 6.4 Measures of Variability | | |-----|--|------------------------| | | 6.5 Measures of Reliability | . 28 | | | 6.6 Vertical Inequities | . 29 | | | 6.7 Test of Hypotheses | . 29 | | | 6.8 The Normal Distribution | | | 7 | C1- C! | 20 | | /. | Sample Size | . 29 | | | 7.1 Importance of Sample Size | . 29 | | | 7.2 Adequacy of a Given Sample Size | | | | 7.3 Required Sample Size | . 29 | | | 7.4 Remedies for Inadequate Samples | | | | 7.5 History of Sales Reporting | . 30 | | 8. | Appraisal Ratio Studies | . 30 | | | 8.1 Rationale | . 30 | | | 8.2 Advantages and Disadvantages | . 30 | | | 8.3 Sample Selection and Resource Requirements | . 31 | | | 8.4 Data Requirements and Appraisal Techniques | . 31 | | | 8.5 Appraisal Chasing | . 31 | | | 8.6 Reviewing of Appraisals | . 32 | | | 8.7 Combining of Sales and Appraisals | . 32 | | | 8.8 Average Unit Value Comparisons | . 32 | | Λ | Estimating Performance for Unsold Properties | 22 | | | | | | 10. | Presentation of Findings, Documentation, and Training (rev. Jan-2010) | .33 | | 11 | Ratio Study Standards | 22 | | 11. | 11.1 Level of Approisal | . 33 | | | 11.1 Level of Appraisal | . 34 | | | 11.1.2 Recommended Appraisal Level Standards for Direct and Indirect | . 34 | | | Equalization | 24 | | | 11.1.3 Confidence Intervals in Conjunction with Performance Standards | . 3 4
24 | | | 11.1.4 Decision Model | | | | 11.1.5 Adjustments for High Variability and Small Samples | | | | 11.1.5 Adjustments for Fight Variability and Sman Samples | | | | 11.1.0 Calculating Equalization Adjustments | | | | 11.2.1 Oversight Uniformity Standards | | | | 11.2.2 Multi-level Uniformity Standards | | | | 11.2.3 Uniformity among Strata | | | | 11.2.4 Vertical Equity | | | | 11.3 Natural Disasters and Ratio Study Standards | . 36 | | | · | | | 12. | | . 36 | | | 12.1 The Performance Review | | | | 12.1.1 Discovery | | | | 12.1.2 Valuation | | | | 12.1.3 Verification | | | | 12.1.4 Forms and Renditions | . 37 | | | 12.2 Appraisal Ratio Studies for Personal Property | | | | 12.2.1 Assessment Ratio for Personal Property | | | | 12.2.2 Stratification | | | | 12.2.3 Property Escaping Assessment | . 37 | | | 12.2.3.1 Identifying Personal Property Owners and Users Not in the Roll | . 37 | | | 12.2.3.2 Identifying Personal Property Not Included in Taxpayer Returns/ | ~ = | | | Reports | . 37 | | | 12.2.4 Computing the Level of Appraisal | . 51 | | Definitions | 39 | |--|----| | References (rev. Jan-2010) | 44 | | Additional Resources | 45 | | Appendix A Sales Validation Guidelines | 47 | | A.1 Sources of Sales Data47 | |---| | A.2 Information Required | | A.3 Confirmation of Sales | | A.4 Screening Sales | | A.4.5 IRS 1031 Exchanges | | A.5 Adjustments to Sale Prices (rev. Jan-2010) 50 A.5.1 Adjustments for Financing 50 A.5.2 Adjustments for Personal Property 51 A.5.3 Adjustments for Assumed Leases 51 A.5.4 Adjustments for Time 51 A.5.5 Other Adjustments 52 A.5.6 Special Assessments 52 | | Appendix B. Outlier Trimming Guidelines | | B.1 Identification of Ratio Outliers (rev. Jan-2010) | | B.2 Scrutiny of Identified Outliers | | B.3 Outlier Trimming | | B.4 Trimming Limitations | | B.5 Analytical Use of Identified Outliers | | B.6 Reporting Trimmed Outliers and Results | | Appendix C. Median Confidence Interval Tables for Small Samples55 | | Appendix D. Sales Chasing Detection Techniques56 | | D.1 Comparison of Average Value Changes | | D.2 Comparison of Average Unit Values | | D.3 Split Sample Technique | | D.4 Comparison of Observed versus Expected Distribution of Ratios | | D.5 Mass Appraisal Techniques | | Appendix E. Alternative Uses for Ratio Study Statistics | | Appendix F. Legal Aspects of Ratio Studies58 | | Appendix G. Sales Validation Questionnaire59 | #### Standard on Ratio Studies #### Part 1. Guidance for Local Jurisdictions This standard comprises two major parts. Part 1 focuses on the needs of local assessors. Part 2 presents guidelines for oversight agencies that use ratio studies for equalization and appraisal performance monitoring. The Definitions section explains the terms used in this standard. The appendixes present many technical issues in greater detail. More information on many topics addressed in this standard can be found in Property Appraisal and Assessment Administration (IAAO 1990, chapter 20) and in Gloudemans (1999, chapter 5). #### 1. Scope This part of the standard provides recommendations on the design, preparation, interpretation, and use of ratio studies for the real property quality assurance operations of an assessor's office. Quality assurance/control measures include data integrity review, assessment level and uniformity analysis, and computer-assisted mass appraisal (CAMA) system performance testing, among others. Assessors may have the opportunity to utilize ratio study information at a greater depth than oversight agencies. These internal studies can help improve appraisal methods or identify areas within the jurisdiction that need attention. External ratio studies conducted by oversight agencies (Part 2) focus more upon testing the assessor's past performance in a few broad property categories. #### 2. Overview For local jurisdictions, *ratio study* is used as a generic term for sales-based studies designed to evaluate appraisal performance. The term is used in preference to the term *as-assessment ratio study* because use of assessments can mask the true level of appraisal and confuse the measurement of appraisal uniformity when the legal assessment level is other than 100 percent of fair market value. #### 2.1 The Concepts of Market Value and Appraisal Accuracy Market value is the major focus of most mass appraisal assignments. The major responsibility of assessing officers is estimating the market value of properties based on legal requirements or accepted appraisal definitions. The viability of the property tax depends largely on the accuracy of such value estimates. The accuracy of appraisals made for assessment purposes is therefore of concern, not only to assessors but also to taxing authorities, property taxpayers, and elected representatives. Appraisal accuracy refers to the degree to which properties are appraised at market value, as defined by professional standards (see *Glossary for Property Appraisal and Assessment* [IAAO 1997]) and legal requirements. While a single sale may provide an indication of the market value of the property in question, it cannot form the basis for a ratio study, which provides information about the market values of groups of properties. Dividing the appraised value by the sale price forms the ratios. The ratio can be multiplied by 100 and expressed as a percentage. Market value is a concept in economic theory and cannot be observed directly. However, market values can be represented in ratio studies by sales prices (market prices) that have been confirmed, screened, and adjusted as necessary (see Appendix A, "Sales Validation Guidelines"). Sales prices provide the most objective estimates of market values and under normal circumstances should provide good indicators of market value. #### 2.2 Aspects of Appraisal Performance There are two major aspects of appraisal accuracy: level and uniformity. Appraisal level refers to the overall ratio of appraised values to market values. Level measurements provide information about the degree to which goals or certain legal requirements are met. Uniformity refers to the degree
to which properties are appraised at equal percentages of market value. #### 2.3 Uses of Ratio Studies Key uses of ratio studies are as follows: - measurement and evaluation of the level and uniformity of mass appraisal models - internal quality assurance and identification of appraisal priorities - determination of whether administrative or statutory standards have been met - determination of time trends - adjustment of appraised values between reappraisals Assessors, appeal boards, taxpayers, and taxing authorities can use ratio studies to evaluate the fairness of funding distributions, the merits of class action claims, or the degree of discrimination (see Appendix F). However, ratio study statistics cannot be used to judge the level of appraisal of an *individual* parcel. Such statistics can be used to adjust assessed values on appealed properties to the common level. #### 2.4 Applicability Local jurisdictions should use ratio studies as a primary mass appraisal testing procedure and their most important performance analysis tool. The ratio study can assist such jurisdictions in providing fair and equitable assessment of all property. Ratio studies provide a means for testing and evaluating mass appraisal valuation models to ensure that value estimates meet attainable standards of accuracy; see *Uniform Standards of Professional Appraisal Practice* (USPAP) *Standard Rule 6-6* (Appraisal Foundation 2010-2011). Ratio study reports are typically included as part of the written documentation used to communicate results of a mass appraisal and to comply with *Standard Rule 6-7(b)*. Ratio studies also play an important role in judging whether constitutional uniformity requirements are met. Compliance with state or provincial performance standards should be verified by the local jurisdiction before value notices are sent to property owners. #### 3. Steps in Ratio Studies Ratio studies generally involve the seven basic steps listed below. - 1. define the purpose, scope and objectives - 2. design - 3. stratification - 4. collection and preparation of market data - 5. matching of appraisal and market data - 6. statistical analysis - 7. evaluation and use of results #### 3.1 Definition of the Purpose, Scope, and Objectives The first step in any ratio study is to determine and state clearly the reasons for the study. This crucial step of identifying the purpose of the study determines the specific goals, scope, content, depth, and required flexibility. #### 3.2 Design In the design of the study the assessor must consider the quantity of sale data and the resources available for con-ducting the ratio study. Although absolute accuracy cannot be ensured, all reasonable, cost-effective steps should be taken to maximize reliability. The assessor should identify the following factors: - the groups or classes of properties to be included in the study - important legal, physical, and economic characteristics of the properties selected for study - the quantity and quality of data available - the values being tested and sales period being used - available resources, such as the number and expertise of staff, computer hardware and software applications, and additional limiting conditions #### 3.2.1 Level of Sophistication and Detail A basic design principle is to keep the study as simple as possible while consistent with its purpose. Ratio studies are not all alike and should be tailored to an intended use. Data analysis has been made easier through computerization. Although every study does not require the same level of statistical detail, each ratio study should include measures of appraisal level, appraisal uniformity, and statistical reliability. Graphs, charts, or other pictorial representations can be useful tools for showing distributions and patterns in the data. There is no model ratio study design that can serve all jurisdictions or all situations equally well. Informed, reasoned judgment and common sense are required in the design of ratio studies. #### 3.2.2 Sampling A ratio study is a form of applied statistics, because the analyst draws conclusions about the appraisal of the population (the entire jurisdiction) of properties based only on those that have sold during a given time period. The sales ratios constitute the sample that will be used to draw conclusions or inferences about the population. To determine the accuracy of appraisals with absolute certainty, it would be necessary for all properties in the population to have been sold in arm's-length, open-market transfers near the appraisal date. Since this is not possible, ratio studies must use samples and draw inferences or conclusions about the population from these samples. The number of parcels in the population (the jurisdiction or stratum) is not an important determinant of a statistically valid and reliable sample. #### 3.2.2.1 Limitations of Sale Samples Users of sales ratio studies should be aware of the follow-ing cautions associated with use of sale samples: - Sales are not "randomly selected" from the population, in the strict technical sense (see section 4.5, Sample Representativeness). - Value-related characteristics of a sale sample may not represent all the value-related characteristics of the population. - Adjustments to sale prices may be difficult to support or may be subjective. #### 3.2.2.2 Data Accuracy and Integrity The findings of a ratio study can only be as accurate as the data used in the study. Personnel involved in collecting, screening, and adjusting sales data or making appraisals should be familiar with real estate conveyance practices in their region. They also should be proficient in the principles and practices of real estate appraisal and understand local market conditions. Accuracy and integrity of data entered into or transferred through computer systems must be ensured. Design of computer programs should make it easy to verify data accuracy. Query tools should be accessible to users, so that data can be verified easily. Methods for checking the accuracy of assigned strata (such as school district, city, neighborhood, and category) as well as of assessed or appraised value, sale price, parcel identifier, and other fields must be established to reduce these and other non-sampling errors. #### 3.3 Stratification Stratification divides all the properties within the scope of the study into two or more groups or strata. Stratification facilitates a more complete and detailed picture of appraisal performance and can enhance sample representativeness. Each type of property subject to a distinct level of assessment could constitute a stratum. Other property groups, such as neighborhoods and age and size ranges, could constitute additional strata. When the purpose of the study is to evaluate appraisal quality, flexibility in stratification is essential. The general goal is to identify areas in which the assessment levels are too low or lack uniformity and property groups for which additional reappraisal work may be required. In such cases, it also is highly desirable to stratify on the basis of more than one characteristic simultaneously. Stratification can help identify differences in level of appraisal between property groups. In large jurisdictions, stratification by geographic areas is generally more appropriate for residential properties, while stratification of commercial properties by either geographic area or property subtypes (e.g., office, retail, and warehouse/industrial) can be more effective. #### 3.4 Collection and Preparation of Market Data The reliability of a ratio study depends in part on how well the sales used in the study reflect market values. The underlying principle for review of sales data is to optimize the sample size, but at the same time to exclude sales that provide invalid indicators of market value. A ratio study sample with fewer than five sales tends to have exceptionally poor reliability and is not very useful. #### 3.5 Matching of Appraisal and Market Data The physical and legal characteristics of each property used in the ratio study must be the same as when sold. This implies two essential steps. First, the appraiser must ascertain whether the property descriptions match. If a parcel is split between the appraisal date and the sale date, a sale of any of its parts should not be used in the ratio study. Second, the appraiser must ascertain whether the property rights transferred, the permitted use, and the physical characteristics of the property on the date of assessment are the same as those on the date of sale. If the physical characteristics of the property have changed since the last appraisal, adjustments may be necessary before including the property in a ratio study. Properties with significant differences in these factors should be excluded from the ratio study. When statutory constraints are imposed on appraisal methods, the resulting assessment may be less than market value. In such cases a sales ratio study may not provide use-ful performance information. Constraints typically apply to land that qualifies for agricultural use value, subsidized housing, mineral land, and timberland. Sales may include property of a type other than the type for which the ratio study analysis is intended. However, sales including more than minimal values of secondary categories are unlikely to be representative, even with adjustment. For example, a property that is predominantly commercial may include residential components. This sale can be included as representative of the commercial category. In this case, the numerator in the ratio calculation would be the total appraised value including the value of both the commercial and residential components. In a second example, for a ratio study of vacant land, the numerator in the ratio should reflect only the appraised value of the land. The sale price should be adjusted for the contributory value of the improvements or the sample should be excluded from
further analysis. #### 3.6 Statistical Analysis After a ratio is computed for each parcel in the study, measures of appraisal level, uniformity, and reliability for the entire jurisdiction and each group or stratum should be computed. The sample also could undergo exploratory data analysis to reveal patterns or features of the data (Hoaglin, Mosteller, and Tukey 1983). #### 3.7 Evaluation and Use of Results A properly designed ratio study is a powerful tool for analyzing appraisal performance, evaluating CAMA system models, and suggesting strategies for improvement. A ratio study also can identify weaknesses in appraisal system performance. Unexpected study results may indicate a need to respecify or recalibrate an appraisal model or to reevaluate the data elements used in the valuation process. However, users of ratio studies should recognize the inherent limitations of this tool, as follows: - 1. A ratio study cannot provide perfect information about appraisal performance. Lack of sufficient sales or overrepresentation of one geographic area or type of property can distort results. - 2. Ratio study validity requires that sold and unsold parcels be appraised at the same level and in the same manner. Violation of this condition seriously undermines the validity of the study. - 3. Findings should be used only in ways that are consistent with the intended use(s) for which the study was designed. - 4. Ratio study data are subject to statistical sampling errors and other processing (nonsampling) errors (see Lessler and Kalsbeek), but these limitations do not invalidate their use for informed decision-making. #### 4. Timing and Sample Selection #### 4.1 Data Requirements and Availability The availability of data influences the design of the study and can call for revisions in the objectives of the study, limit the usefulness of the calculated statistics, or both. #### 4.1.1 Nature of the Population The type of properties, market conditions, and composition of the population in terms of age, size, and value range are essential to the proper design of the study and interpretation of the results. Very large properties that rarely sell (e.g., a large power plant) can be ignored in a ratio study designed to evaluate local appraisal performance. #### 4.1.2 Assessment Information Appraised values are the numerators in the ratios used in a ratio study. Information about appraisal dates, legal requirements concerning reappraisals, the dates on which the appraisals were originally set, and the period they remained in effect is required for establishing the date of analysis. #### 4.1.3 Indicators of Market Value Sale price, as an indicator of market value, is the denominator in the calculation of the ratio. Specific information about the date, amount, terms, and conditions of a sale is required for proper analysis. #### 4.1.4 Property Characteristics Information on property characteristics is crucial for determining whether property that was assessed is essentially the same as what was sold. Data for both sold and unsold properties should be current, relevant, and collected in a consistent manner. #### 4.2 Frequency of Ratio Studies The purpose of a ratio study dictates how often it should be conducted. Regardless of the reappraisal cycle, ratio studies made by assessors should be conducted at least annually. This frequency enables potential problems to be recognized and corrected before they become serious. When there is a revaluation, assessors should conduct at least four ratio studies to establish the following: - 1. a baseline of current appraisal performance - 2. preliminary values so that any major deficiency can be corrected - 3. values used in assessment notices sent to taxpayers - 4. final values after completion of the first, informal phase of the appeals process The final study can be used in planning for the following year. In addition, ratio studies can be conducted as needed to evaluate appraisal procedures, investigate a discrimination complaint, or answer a specific question. #### 4.3 Date of Analysis The date of analysis depends on the purpose of the study, but generally is the assessment date of the tax year being studied, which can be the current, the next, or a past year. The assessment date of the next tax year should be used when the purpose of the study is to evaluate preliminary values in a reappraisal. #### 4.4 Period from Which Sales Are Drawn This period depends on the purpose of the study and on sales activity. In general, the period should be as short as possible and, ideally, no more than one year. A longer period may be required to produce a representative sample for some strata within a jurisdiction. To develop an adequate sample size, the sales used in ratio studies can span a period of as long as five years provided there have been no significant economic shifts or changes to property characteristics and sales prices have been adjusted for time as necessary. #### 4.5 Sample Representativeness In general, a ratio study is valid to the extent that the sample is sufficiently *representative* of the population. The distribution of ratios in the population cannot be ascertained directly and appraisal accuracy can vary from property to property. By definition, a ratio study sample would be representative when the distribution of ratios of properties in the sample reflects the distribution of ratios of properties in the population. Representativeness is improved when the sample proportionately reflects major property characteristics present in the population of sold and unsold properties. As long as sold and unsold parcels are appraised in the same manner and the sample is otherwise representative, statistics calculated in a sales ratio study can be used to infer appraisal performance for unsold parcels. However, if parcels that sell are selectively reappraised based on their sale prices and if such parcels are in the ratio study, uniformity inferences will not be accurate (appraisals appear more uniform than they are). In this situation, measures of appraisal level also will not be supportable unless similar unsold parcels are appraised by a model that produces the same overall percentage of market value (appraisal level) as on the parcels that sold (see Appendix D, "Sales Chasing Detection Techniques"). Assessing officials must incorporate a quality control program; including checks and audits of the data, to ensure that sold and unsold parcels are appraised at the same level. Operationally, representativeness is improved when the following occur: - 1. Appraisal procedures used to value the sample parcels are similar to procedures used to value the corresponding population - 2. Accuracy of recorded property characteristics data for sold property does not differ substantially from that of unsold property, - 3. Sample properties are not unduly concentrated in certain areas or types of property whose appraisal levels differ from the general level of appraisal in the population - 4. Sale prices provide valid indicators of market value. The first requirement generally is met unless sampled parcels are valued or updated differently from non-sampled parcels, or unless appraisals of sample parcels were done at a different time than appraisals of non-sampled parcels. For example, it is unlikely that the sample is representative of unsold parcels when the sample consists mostly of new construction, first-time sales of improved properties, condominium conversions, or newly platted lots. The second requirement is met only if value-related property characteristics are updated uniformly for all property in a class as opposed to being updated only upon sale. The third requirement relates to the extent to which appraisal performance for the sample reflects appraisal performance for the population. The fourth requirement generally is met when the sales to be used in the sample are properly screened, adjusted if necessary, and validated. #### 4.6 Acquisition and Validation of Sales Data Sales data are important in ratio studies and play a crucial role in any credible and efficient mass appraisal system. In some instances, it may be necessary to make adjustments to sales prices so they are more representative of the market. When there is more than one sale of the same property during a study period, only one of the transactions should be used in the ratio study. For guidelines on sales validation see Appendix A. #### 5. Ratio Study Statistics and Analyses Once data have been properly collected, reviewed, assembled, and adjusted, outlier handling and statistical analysis can begin. This process involves the following steps. - 1. A ratio should be calculated for each observation in the sample by dividing the appraised (or assessed) value by the sale price. - 2. Graphs and exhibits can be developed that show the distribution of the ratios. - 3. Exploratory data analysis, including outlier labeling/identification, and tests of the hypotheses of normality may be conducted. - 4. Ratio study statistics of both appraisal level and uniformity should be calculated. - 5. Reliability measures should be calculated. An example of a ratio study statistical analysis report is given in table 1-1. #### 5.1 Data Displays Displays or exhibits that provide a profile or picture of ratio study data are useful for illustrating general patterns and trends, particularly to nonstatisticians. The particular form of the displays, as well as the data used (e.g., sales prices, sales ratios, and property characteristics) depends on the purposes of the particular display. Types of displays useful in ratio studies are arrays, frequency distributions, histograms, plots, and maps (Gloudemans 1999). Graphic displays can be used to - indicate whether a sample is sufficiently representative of the properties in a stratum - indicate the degree of nonnormality in the distribution of ratios - depict the overall level of appraisal - depict the degree of
uniformity - depict the degree of value bias (regressivity or progressivity) - compare the level of appraisal or degree of uniformity among strata - detect outlier ratios Table 1-1. Example of Ratio Study Statistical Analysis Data Analyzed | Rank of ratio | | Sale Price | Ratio (AV/SP) | |---------------|-----------|------------|---------------| | | Appraised | (\$) | | | 1 | 48,000 | 138,000 | 0.348 | | 2 | 28,800 | 59,250 | 0.486 | | 3 | 78,400 | 157,500 | 0.498 | | 4 | 39,840 | 74,400 | 0.535 | | 5 | 68,160 | 114,900 | 0.593 | | 6 | 94,400 | 159,000 | 0.594 | | 7 | 67,200 | 111,900 | 0.601 | | 8 | 56,960 | 93,000 | 0.612 | | 9 | 87,200 | 138,720 | 0.629 | | 10 | 38,240 | 59,700 | 0.641 | | 11 | 96,320 | 146,400 | 0.658 | | 12 | 67,680 | 99,000 | 0.684 | | 13 | 32,960 | 47,400 | 0.695 | | 14 | 50,560 | 70,500 | 0.717 | | 15 | 61,360 | 78,000 | 0.787 | | 16 | 47,360 | 60,000 | 0.789 | | 17 | 58,080 | 69,000 | 0.842 | | 18 | 47,040 | 55,500 | 0.848 | | 19 | 136,000 | 154,500 | 0.880 | | 20 | 103,200 | 109,500 | 0.942 | | 21 | 59,040 | 60,000 | 0.984 | | 22 | 168,000 | 168,000 | 1.000 | | 23 | 128,000 | 124,500 | 1.028 | | 24 | 132,000 | 127,500 | 1.035 | | 25 | 160,000 | 150,000 | 1.067 | | 26 | 160,000 | 141,000 | 1.135 | | 27 | 200,000 | 171,900 | 1.163 | | 28 | 184,000 | 157,500 | 1.168 | | 29 | 160,000 | 129,600 | 1.235 | | 30 | 157,200 | 126,000 | 1.248 | | 31 | 99,200 | 77,700 | 1.277 | | 32 | 200,000 | 153,000 | 1.307 | | 33 | 64,000 | 48,750 | 1.313 | | 34 | 192,000 | 144,000 | 1.333 | | 35 | 190,400 | 141,000 | 1.350 | | 36 | 65,440 | 48,000 | 1.363 | Note: Due to rounding, totals may not add to match those on following table, which reports results of statistical analysis of above data. #### Results of statistical analysis | Statistic | Result | | |----------------------------------|------------|--| | Number of observations in | 36 | | | Total appraised value | \$3,627,04 | | | Total sale price | \$3,964,62 | | | Average appraised value | \$100,751 | | | Average sale price | \$110,128 | | | Mean ratio | 0.900 | | | Median ratio | 0.864 | | | Weighted mean ratio | 0.915 | | | Price-related differential (PRD) | 0.98 | | | Coefficient of dispersion (COD) | 29.8% | | 95% median two-tailed confidence interval (0.684, 1.067) 95% weighted mean two-tailed confidence (0.806, 1.024) interval Normal distribution of ratios (0.05 level of Reject – D'Agostino significance) Pearson K² & Shapiro-Wilk W Date of analysis 9/99/9999 Category or class being analyzed Residential - identify specific opportunities to improve mass appraisal performance - track performance measures over time #### 5.2 Outlier Ratios Outlier ratios are very low or high ratios as compared with other ratios in the sample. The validity of ratio study statistics used to make inferences about population parameters could be compromised by the presence of outliers that distort the statistics computed from the sample. One extreme outlier can have a controlling influence over some statistical measures. However, some statistical measures, such as the median ratio, are resistant to the influence of outliers and trimming would not be required. Although the coefficient of dispersion (COD) is affected by extreme ratios, it is affected to a lesser extent than the coefficient of variation (COV) and the mean. The price-related differential (PRD) and weighted mean are sensitive to sales with high prices even if the ratios on higher priced sales do not appear unusual relative to other sales. Outlier ratios can result from any of the following: - 1. an erroneous sale price - 2. a nonmarket sale - 3. unusual market variability - 4. a mismatch between the property sold and the property appraised - 5. an error in the appraisal of an individual parcel - 6. an error in the appraisal of a subgroup of parcels - 7. any of a variety of transcription or data handling errors In preparing any ratio study, outliers should be - 1. identified - 2. scrutinized to validate the information and correct errors - 3. trimmed if necessary to improve sample representativeness For guidelines on outlier identification and trimming, see Appendix B, "Outlier Trimming Guidelines." #### 5.3 Measures of Appraisal Level Estimates of appraisal level are based on measures of central tendency. They should be calculated for each stratum and for such aggregations of strata as may be appropriate. Several common measures of appraisal level (central tendency) should be calculated in ratio studies, including the median ratio, mean ratio, and weighted mean ratio. When one of these measures is calculated on the data in a sample, the result is a point estimate, which is accurate for the sample but is only one indicator of the level of appraisal in the population. Confidence intervals around the measures of level provide indicators of the reliability of the sample statistics as predictors of the overall level of appraisal of the population. Note that noncompliance with appraisal level standards cannot be determined without the use of confidence intervals or hypothesis tests. #### 5.3.1 Median The median ratio is the middle ratio when the ratios are arrayed in order of magnitude. If there is an even number of ratios, the median is the average of the two middle ratios. The median always divides the data into two equal parts and is less affected by extreme ratios than the other measures of central tendency. Because of these properties, the median is the generally preferred measure of central tendency for evaluating overall appraisal level, determining reappraisal priorities, or evaluating the need for a reappraisal. #### 5.3.2 Arithmetic Mean The arithmetic mean (aka mean or average) ratio is the average of the ratios. It is calculated by summing the ratios and dividing by the number of ratios. In a normal distribution the mean equals the median. In a distribution skewed to the right (typical of ratio study data), the mean is greater than the median. The mean is affected more by extreme ratios than the median. # 5.3.3 Weighted Mean The weighted mean ratio is the value-weighted average of the ratios in which the weights are proportional to the sales prices. The weighted mean also is the ratio of the average assessed value to the average sales price value. The weighted mean gives equal weight to each dollar of value in the sample, whereas the median and mean give equal weight to each parcel. The weighted mean is an important statistic in its own right and also is used in computing the PRD, a measure of uniformity between high-and low-value properties The weighted mean also can be calculated by (1) summing the appraised values, (2) summing the sales prices, and (3) dividing the first result by the second. The weighted mean also is called the *aggregate ratio*. # 5.3.4 Contrasting Measures of Appraisal Level Because it gives equal weight to each ratio and is unaffected by extreme ratios, the median is the preferred measure of central tendency for evaluating appraisal performance. Although the mean ratio is also a parcel-based measure, it can be affected appreciably by extreme ratios and can be relied upon only if the sample is of adequate size and contains few outliers. # **5.4 Measures of Variability** Measures of dispersion or variability relate to the uniformity of the ratios and should be calculated for each stratum in the study. In general, the smaller the measure, the better the uniformity, but extremely low measures can signal one of the following #### acceptable causes - extremely homogeneous properties - very stable markets unacceptable causes - lack of quality control - calculation errors - poor sample representativeness - sales chasing Note that as market activity changes or as the complexity of properties increases, the measures of variability usually increase, even though appraisal procedures may be equally valid. #### 5.4.1 Coefficient of Dispersion The most generally useful measure of variability or uniformity is the COD. The COD measures the average percentage deviation of the ratios from the median ratio and is calculated by the following steps: - 1. subtract the median from each ratio - 2. take the absolute value of the calculated differences - 3. sum the absolute differences - 4. divide by the number of ratios to obtain the average absolute deviation - 5. divide by the median - 6. multiply by 100 The COD has the desirable feature that its interpretation does *not* depend on the assumption that the ratios are normally distributed. In general, more than half the ratios fall within one COD of the median. The COD should not be calculated about the mean ratio. # 5.4.2 Other Measures of Variability Other useful measures of variability or the distribution of ratio study data are as follows: - range - percentiles - quartiles - interquartile range - median absolute deviation (MAD) - median percent deviation - coefficient of concentration - standard deviation - coefficient of variation (COV) - weighted coefficient of dispersion - weighted coefficient of variation See *Property Appraisal and Assessment Administration* (IAAO 1990, chapter 20) and Gloudemans (1999, chapter 5) for further discussion on these statistical measures. Note that the typical percentage error is not the COD, but is expressed by the median percentage deviation statistic. Also, it is the interquartile range, not the COD, that brackets the middle 50 percent of the assessment ratios. #### 5.5 Measures of Reliability Reliability, in a statistical sense, concerns the degree of confidence that can be placed in a calculated statistic for a sample. (For example, how precisely does the sample median ratio approximate the population median appraisal ratio?) The primary measure of importance to the local assessor is the confidence interval. A confidence interval consists of two numbers (upper and lower limits) that bracket a calculated measure of central tendency for the sample; there is a specified degree of confidence that the calculated upper
and lower limits bracket the true measure of central tendency for the population. See Appendix 204 in *Property* Appraisal and Assessment Administration (IAAO 1990) and Appendix C for guidelines on calculating small-sample confidence intervals. New computer-intensive statistical methods, such as the "bootstrap" (Efron and Tibshirani 1993), now enable the development of confidence interval estimates for any statistic of interest, including measures of level and uniformity. Measures of reliability explicitly take into account the errors inherent in a sampling process. In general, these measures are tighter (better) when samples are relatively large and the uniformity of ratios is relatively good. Measures of reliability indicate whether there is a desired degree of confidence that a given level of appraisal has *not* been achieved. This does not mean that an appraiser should tolerate measures of central tendency that fail to meet goals whenever measures of reliability are wide due to small samples, poor uniformity, or both. Such cases require either additional data for proper analysis or alternative action, such as a reappraisal, if poor uniformity is the cause. Such correction might include reappraisal, trending of strata, and respecifying or recalibrating mass appraisal models (see section 9 in this part for a discussion of ratio study standards). #### 5.6 Vertical Inequities The measures of variability discussed in section 5.4 relate to "horizontal," or random, dispersion among the ratios in a stratum, regardless of the value of individual parcels. Another form of inequity can be systematic differences in the appraisal of low- and high-value properties, termed "vertical" inequities. When low-value properties are appraised at greater percentages of market value than high-value properties, assessment *regressivity* is indicated. When low-value properties are appraised at smaller percentages of market value than high-value properties, assessment *progressivity* is the result. Appraisals made for tax purposes of course should be neither regressive nor progressive. An index statistic for measuring vertical equity is the PRD, which is calculated by dividing the mean ratio by the weighted mean ratio. This statistic should be close to 1.00. Measures considerably above 1.00 tend to indicate assessment regressivity; measures below 1.00 suggest assessment progressivity. When samples are small or the weighted mean is heavily influenced by several extreme sales prices, the PRD may not be a sufficiently reliable measure of vertical inequities. A scatter plot of ratios versus appraised values or sale prices is a useful diagnostic tool. A downward (or upward) trend to the data indicates systematic regressivity (or progressivity). Assuming repre-sentativeness, high PRDs generally indicate low appraisals on high-priced properties. If not sufficiently representative, extreme sales prices can be excluded in calculation of the PRD. Similarly, when samples are very large, the PRD may be too insensitive to show small pockets in which there is significant vertical inequity. Standards for evaluating the PRD are given in section 9.2.7 in this part. In addition, more powerful statistical tests for vertical inequities are available and should be employed to determine the significance of the indication provided by the PRD (see section 5.7 in this part and Twark, Everly and Downing [1989]). When these tests show vertical inequities, such inequities should be addressed through reappraisal or other corrective actions. In some cases, additional stratification can help isolate the problem. Measures of level computed for value strata should not be compared as a way of determining vertical inequity because of a boundary effect that is most pronounced in the highest and lowest strata (Schultz 1996). #### **5.7 Tests of Hypotheses** An appropriate test should be used whenever the purpose of a ratio study is implicitly or explicitly to test a hypothesis. A hypothesis is essentially a tentative answer to a question, such as, Are residential and commercial properties appraised at equal percentages of market value? A test is a statistical means of deciding whether the answer "yes" to such a question can be rejected at a given level of confidence. In this case, if the test leads to the conclusion that residential and commercial properties are not appraised at equal percentages of market value, some sort of corrective action on the part of assessing officials is clearly indicated. Tests are available to determine whether the - level of appraisal of a stratum fails to meet an established standard - meaningful differences exist in the level of appraisal between two or more strata - high-value properties are appraised at a different percentage of market value than low-value properties Appropriate tests are listed in table 1-2 and discussed in Gloudemans (1999), *Property Appraisal and Assessment Administration* (IAAO 1990), and *Improving Real Property Assessment* (IAAO 1978, 137–54). #### **5.8** The Normal Distribution Many conventional statistical methods assume the sample data conform to the shape of a bell curve, known as the normal (or Gaussian) distribution. Performance measures based on the mean or standard deviation can be misleading if the study sample does not meet the assumption of normality. As a first step in the analysis, the distribution of sample ratios should be examined to reveal the shape of the data and uncover any unusual features. Although ratio study samples typically do not conform to the normal distribution, graphical techniques and numerical tests can be used to explore the data thoroughly. Traditional choices are the binomial, chi-square, and Lilliefors tests. Newer and more powerful procedures are the Shapiro-Wilk W, the D'Agostino-Pearson K^2 , and the Anderson-Darling A_2 tests (D'Agostino and Stephens 1986). #### 5.9 Parametric and Distribution-Free (Non-para metric) Statistics For every problem that might be solved by using statistics, there is usually more than one measure or test. These measures and tests can be divided into two broad categories: parametric and distribution-free (nonparametric). Parametric statistics assume the population data conform to a known family of probability distributions (such as the normal distribution). When the mean, weighted mean, and standard deviation are used in this context, they tend to be more meaningful. Distribution-free statistics make less restrictive assumptions and do not require knowledge about the shape of the underlying population distribution. Given similar distribution of ratios in the underlying populations, distribution free tests, such as the Mann-Whitney test, can determine the likelihood that the level of assessment of property groups differ (Hart 2001). Distribution-free statistics are the median and the COD. # 6. Sample Size # **6.1 Importance of Sample Size** There is a general relationship between statistical reliability and the number of observations in a sample. The larger the sample size, the greater the reliability. #### 6.2 Adequacy of a Given Sample Size The adequacy of a given sample size can be evaluated by computing measures of reliability. If the confidence interval is sufficiently narrow, the sample is large enough. If the confidence interval is too wide, the assessor must either accept less precision or enlarge the sample, if possible. #### **6.3 Required Sample Size** Formulas are available to compute the minimum sample size necessary to produce selected margins of error at a specified level of confidence. Such formulas depend crucially on the estimated variability of the ratios (Cochran 1977). Table 1-2. Tests of Hypotheses | Null | Nonparametric Test | Parametric Test | |--|--|---------------------------| | 1. Ratios are normally distributed. | Shapiro-Wilk W test
D'Agostino-Pearson K ²
test Anderson-Darling
A ² test Lillifores Test | N/A | | 2. The level of appraisal meets legal | Binomial test | t-test | | Two property groups are appraised at equal percentages of market | Mann-Whitney test | t-test | | Three or more property groups are
appraised at equal percentages of | Kruskal-Wallis test | Analysis of Variance | | 5. Low- or high-value properties are appraised at equal percentages of | Spearman Rank test | Correlation or regression | | 6. Sold and unsold parcels are treated | Mann-Whitney test | t-test | | | | | #### **6.4 Remedies for Inadequate Samples** Small samples should be enlarged if the assessor desires to increase the reliability of statistical measures. Inadequate sample sizes are typically indicated by unacceptably wide confidence intervals. The following alternatives should be considered: - 1. Restratification. If levels of appraisal are similar or properties are homogenous, broader strata containing larger samples can be created by combining existing strata or by stratifying on a different basis. - 2. Extending the period from which sales are drawn. This is often the most practical and effective approach. Sales from prior years can be used; however, adjusting the sale price for time may be necessary and significant property characteristics must not change. - 3. Enlarging the sample by validating previously rejected sales. Sales previously excluded from the analysis, because it was not administratively expedient to confirm them or to make adjustments, can be reevaluated. - 4. Imputing appraisal performance. Ratio study statistics for strata with no or few sales can sometimes be imputed from the results obtained for other strata. These strata should be as similar as possible. Procedures and techniques used to appraise properties in the strata also should be similar. #### 6.5 Other Sample Size-Related Representativeness Problems
Sales from areas or substrata in which the number of sales is disproportionately large can distort ratio study results by weighting level and uniformity indicators toward whatever conditions exist in the overrepresented area. To alleviate this problem and create better representativeness, large samples can be further stratified by - randomly selecting sales to be removed - isolating the overrepresented groups into substrata - redefining the time period for the overrepresented groups - weighting the data # 7. Reconciliation of Ratio Study Performance Measures An important objective of a ratio study conducted by a local jurisdiction is the evaluation of model performance. This is a USPAP requirement in the reconciliation of a mass appraisal. Assessing officials must incorporate a quality control program, including checks and audits of the data, to ensure that sold and unsold parcels are appraised at the same level. This also requires characteristic data for both sold and unsold properties to be current, appropriate, relevant, and collected in a consistent manner. # 8. Presentation of Findings, Documentation, and Training The findings of a ratio study should be sufficiently detailed and documented to meet the needs of the users of the study. Documentation for internal ratio studies can be less detailed than for reports prepared for external uses. The following documentation should be provided in conjunction with any published ratio study. #### **8.1 Text** A brief text describing the purpose and the methods used should accompany a ratio study. This information can be incorporated in the report of the findings or be contained in a separate memorandum. The text should contain the statistics presented and outline the major procedural steps in completing the study. The text also should describe any rules for eliminating sales or extreme ratios and acknowledge any significant limitations in the data. #### 8.2 Exhibits The body of the ratio study report should include for each stratum the statistical results intended to be used for decision-making purposes. All reports should contain the following information: - date and tax year of the appraisals being evaluated - number of parcels in each stratum - number of sales - number of sales trimmed from the study - measures of central tendency (appraisal level) - measures of uniformity (variability) and price-related biases - confidence interval (measures of reliability) about the measures of central tendency - summary of adjustments made to sales prices In addition, there should be a description of the steps taken to ensure that sold and unsold properties were valued and described consistently. If the sold and unsold properties were not treated identically, the documentation should characterize the differences discovered between them. # 8.3 Analyses and Conclusions An objective statement of the results of the ratio study should be prepared. If the study is one in a series, a comparison of the results with those of previous studies can be helpful. # 8.4 Documentation Ratio study procedures should be documented thoroughly. This documentation should take three forms. First, a general guideline should explain the design of the study. This guideline should be updated whenever procedures are changed. Second, all software applications should be documented so that the program logic can be reviewed and modified as needed. Third, a user's manual should explain how to execute the study or run the software. #### 8.5 Training and Education The effectiveness of ratio studies can be improved through education and training. Assessment supervisors should conduct seminars or workshops for the appraisal staff to explain how to interpret reports, how ratio studies can be used to improve appraisal performance, and how the results will be used in-house. # 9. Ratio Study Standards Each local jurisdiction should have ratio study performance standards. Local standards should be consistent with state or provincial standards. The standards summarized in table 1-3 are suggested for jurisdictions in which current market value is the legal basis for assessment. In general, when these standards or other local standards are not met, reappraisal or other corrective measures should be taken. All standards recommended in this section are predicated on the assumption that steps have been taken to maximize representativeness and validity in the underlying ratio study. #### 9.1 Level of Appraisal In analyzing appraisal level, ratio studies attempt to measure statistically how close appraisals are to market value (or to a required statutory constraint that can be expressed as a percentage of market value) on an overall basis. While the theoretically desired level of appraisal is 1.00, an appraisal level between 0.90 and 1.10 is considered acceptable for any class of property. However, each class of property must be within 5 percent of the overall level of appraisal of the jurisdiction (see Section 9.2.1 in this part). Both criteria must be met. By themselves, the calculated measures of central tendency provide only an indication, not proof, of whether the level meets the appropriate goal. Confidence intervals and statistical tests should be used to determine whether it can be reasonably concluded that appraisal level differs from the established goal in a particular instance. Additionally, when uniformity measures show considerable variation between ratios, level measurements may be less meaningful. # 9.1.1 Purpose of Level-of-Appraisal Standard Jurisdictions that follow the IAAO recommendation of annual revaluations (Standard on Property Tax Policy [IAAO 2010] and Standard on Mass Appraisal of Real Property [IAAO 2008]) and comply with USPAP standard rules should be able to develop mass appraisal models that maintain an overall ratio level of 100 percent (or very near thereto). However, the local assessor may be compelled to follow reappraisal cycles defined by a legal authority or public policy that can extend beyond one year. During extended cycles the influence of inflation or deflation can shift the overall ratio. The purpose of a performance standard that allows reasonable variation from 100 percent of market value is to recognize uncontrollable sampling error and the limiting conditions that may constrain the degree of accuracy that is possible and cost-effective within an assessment jurisdiction. Further, the effect of performance standards on local assessors must be considered in light of public policy and resources available. Table 1-3. Ratio Study Uniformity Standards indicating acceptable general quality* | Type of property—General | Type of property—Specific | COD Range** | |--|--|-------------| | Single-family residential (including residential | Newer or more homogeneous areas | 5.0 to 10.0 | | Single-family residential | Older or more heterogeneous areas | 5.0 to 15.0 | | Other residential | Rural, seasonal, recreational,
manufactured housing, 2–4 unit | 5.0 to 20.0 | | Income-producing properties | Larger areas represented by large | 5.0 to 15.0 | | Income-producing properties | Smaller areas represented by smaller | 5.0 to 20.0 | |-----------------------------|--------------------------------------|------------------------------| | Vacant land | | 5.0 to 25.0 | | Other real and personal | | Varies with local conditions | These types of property are provided for guidance only and may not represent jurisdictional requirements. required. PRD's for each type of property should be between 0.98 and 1.03 to demonstrate vertical equity. PRD standards are not absolute and may be less meaningful when samples are small or when wide variation in prices exist. In such cases, statistical tests of vertical equity hypotheses should be substituted (see table 1-2). #### 9.1.2 Confidence Intervals in Conjunction with Performance Standards The purpose of confidence intervals and similar statistical tests is to determine whether it can be reasonably concluded that the appraisal level differs from the established performance standard in a particular instance. A conclusion of noncompliance requires a high degree of confidence; thus, a 90 percent (two-tailed) or 95 percent (one-tailed) confidence level should be used, except for small or highly variable samples. The demonstration ratio study report in table 1-4 presents 95% two-tailed confidence interval estimates for the mean, median, and weighted mean ratio. # 9.2 Appraisal Uniformity Assuming the existence of an adequate and sufficiently representative sample, if the uniformity of appraisal is unacceptable, model recalibration and/or reappraisal should be undertaken. It is important to recognize that the COD is a point estimate and, especially for small samples, should not be accepted as proof of assessment uniformity problems. Proof can be provided by recognized statistical tests, including bootstrap confidence intervals. In unusually homogeneous strata, low CODs can be anticipated. In all other cases, CODs less than 5 percent should be considered suspect and possibly indicative of non-representative samples or selective reappraisal of selling parcels. Table 1-4. Demonstration Ratio Study Report | Rank | Parcel # | Appraised | Sale price* | Ratio | Statistic | Result | |------|----------|-----------|-------------|-------|--------------------------------|-------------| | 1 | 9 | \$87,200 | 138,720 | 0.629 | Number (n) | 17 | | 2 | 10 | 38,240 | 59,700 | 0.641 | Total appraised value | \$1,455,330 | | 3 | 11 | 96,320 | 146,400 | 0.658 | Total sale price | \$1,718,220 | | 4 | 12 | 68,610 | 99,000 | 0.693 | Avg appraised value | \$85,608 | | 5 | 13 | 32,960 | 47,400 | 0.695 | Avg sale price | \$101,072 | | 6 | 14 | 50,560 | 70,500 | 0.717 | | | | 7 | 15 | 61,360 | 78,000 | 0.787 | Mean ratio | 0.827 | | 8 | 16 | 47,360 | 60,000 | 0.789 | Median ratio |
0.820 | | 9 | 17 | 56,580 | 69,000 | 0.820 | Weighted mean ratio | 0.847 | | 10 | 18 | 47,040 | 55,500 | 0.848 | | | | 11 | 19 | 136,000 | 154,500 | 0.880 | | | | 12 | 20 | 98,000 | 109,500 | 0.895 | Price-related differential | 0.98 | | 13 | 21 | 56,000 | 60,000 | 0.933 | Coefficient of dispersion | 14.5 | | 14 | 22 | 159,100 | 168,000 | 0.947 | | | | 15 | 23 | 128,000 | 124,500 | 1.028 | 95% conf. int. mean (two- | 0.754 to | | 16 | 24 | 132,000 | 127,500 | 1.035 | 95% conf. int. median (two- | 0.695 to | | 17 | 25 | 160,000 | 150,000 | 1.067 | 95% conf. int. wtd. mean (two- | 0.759 to | Date: 0/0/00. No outlier trimming * or adjusted sale price ^{*} Appraisal level for each type of property shown should be between 0.90 and 1.10, unless stricter local standards are ^{**} CODs lower than 5.0 may indicate sales chasing or non-representative samples. #### 9.2.1 Uniformity among Strata Although the goal is to achieve an overall level of appraisal equal to 100 percent of the legal requirement, ensuring uniformity in appraisal levels among strata also is important. The level of appraisal of each stratum (class, neighborhood, age group, market areas, and the like) should be within 5 percent of the overall level of appraisal of the jurisdiction. For example, if the overall level of appraisal of the jurisdiction is 1.00, but the appraisal level for residential property is 0.93 and the appraisal level for commercial property is 1.06, the jurisdiction is not in compliance with this requirement. This test should be applied only to strata subject to compliance testing. It can be concluded that this standard has been met if 95 percent (two-tailed) confidence intervals about the chosen measures of central tendency for each of the strata fall within 5 percent of the overall level of appraisal calculated for the jurisdiction. Using the above example, if the upper confidence limit for the level of residential property is 0.97 and the lower confidence limit for commercial property is 1.01, the two strata are within the acceptable range. # 9.2.2 Uniformity among Single-Family Residential Properties The COD for single-family homes and condominiums in older or more heterogeneous areas should be between 5.0 and 15.0. In areas of newer or fairly similar residences, it should be between 5.0 and 10.0. #### 9.2.3 Uniformity among Income-Producing Properties The COD should be between 5.0 and 20.0. In larger, urban market areas, it should be between 5.0 and 15.0. # 9.2.4 Uniformity among Unimproved Properties The COD for vacant land should be between 5.0 and 20.0. The upper limit for an acceptable COD for vacant rural residential or seasonal land may be 25.0. # 9.2.5 Uniformity among Rural Residential and Seasonal Properties, Manufactured Housing, and Multifamily Dwellings The COD for heterogeneous rural residential property, recreational or seasonal homes, manufactured housing, and multifamily dwellings (2-4 units) should be between 5.0 and 20.0. #### 9.2.6 Uniformity among Other Properties Target CODs for special-purpose real property and per-sonal property should reflect the nature of the properties involved, market conditions, and the availability of reliable market indicators. #### 9.2.7 Vertical Equity PRDs should be between 0.98 and 1.03. The reason this range is not centered on 1.00 relates to an inherent upward bias in the arithmetic mean (numerator in the PRD) that does not equally affect the weighted mean (denominator in the PRD). When samples are small, have high dispersion, or include properties with extreme values, the PRD may not provide an accurate indication of assessment regressivity or progressivity. Similar considerations apply to special-purpose real property and to personal property. It is good practice to perform an appropriate statistical test for price-related biases before concluding that they exist (see table 1-2). # 9.2.8 Alternative Uniformity Standards The above standards may not be applicable to properties in unique, depressed, or rapidly changing markets. In such cases, assessment administrators may be able to develop target standards based on an analysis of past performance or results in similar markets elsewhere. Such an analysis can be based on ratio study results for the past five years or more. # 9.3 Natural Disasters and Ratio Study Standards Natural disasters such as earthquakes, floods, and hur-ricanes can have a substantial impact on the interpretation and use of ratio studies. In particular, they - increase the difficulty of accurately identifying the physical and economic characteristics of property on the dates of sale and appraisal - increase the difficulty of producing sufficiently reliable appraised values - decrease the availability of usable sales and other market data - disrupt the supply and demand equilibrium in the neighborhood community or region As a result of these potential problems, a number of unreliable sample properties may need to be excluded and sample sizes may be unavoidably reduced. All these factors should be considered when ratio study standards are being applied to study results from areas substantially affected by disasters. Such consideration must not result in unwarranted relaxation of applicable standards. When faced with such situations, assessors must use informed, reasoned judgment and common sense to produce a sufficiently reliable ratio study, based upon the best information available. 10. Personal Property Ratio Studies Studies can be done by local assessors to determine the quality of assessments of personal property in their jurisdictions. For guidelines on conducting personal property ratio studies, see section 12 in Part 2. # Standard on Ratio Studies # Part 2. Equalization and Performance Monitoring # 1. Scope This part of the standard provides guidance and supplementary information to oversight agencies that perform ratio studies. Oversight or equalization ratio studies are designed to examine the overall degree of accuracy of assessments within or among categories of property, market areas, assessment jurisdictions or political subdivisions, such as school districts, municipalities, counties, states or provinces. # 2. Oversight Ratio Studies Oversight agencies are often required to monitor appraisal performance and take corrective actions when necessary. Equalization is a common tool used by oversight agencies to address problems associated with appraisal level. Reappraisal orders can be used to correct uniformity problems. #### 2.1 Monitoring of Appraisal Performance Oversight agencies usually perform sales ratio studies, which can include independent appraisals, to monitor local assessment performance. The findings can serve as the basis for enforcement actions, such as reappraisal or equalization orders. State/provincial agencies also often perform ratio studies to advise assessors and the public about local appraisal conditions. Many state or provincial oversight agencies have a dual role. One role is to advise and assist local appraisal offices, and the other role is to measure local appraisal performance. These two roles can create a conflict of interest, which should be minimized. # 2.2 Equalization Oversight agencies can use the results of ratio studies to equalize, directly or indirectly, appraisals or assessments in taxing jurisdictions. Direct equalization is accomplished by an oversight agency which alters locally determined assessments by ordering appraisals within jurisdictions or property classes to be adjusted to market value or to the legally required level of assessment. Direct equalization can also involve adjusting appraisals of centrally assessed properties. When indirect equalization is used, appraisals are not adjusted. Instead, indirect equalization involves an oversight agency estimating total taxable value, given the legally required level of assessment or market value. Indirect equalization allows proper distribution of intergovernmental transfer payments between state or provincial and local governments despite different levels of appraisal among jurisdictions or property classes. Equalization is not an appraisal or a substitute for reappraisal. When equalization is based on ratio study samples, sampling error must be taken into account. When confidence intervals include an acceptable range, equalization cannot be supported statistically. When confidence intervals *fail* to bracket official requirements, equalization actions are supported (see section 6.5, "Measures of Reliability," and section 11.1, "Level of Appraisal"). Legal aspects of ratio studies, many of which relate to equalization, are discussed in Appendix F. #### 2.2.1 Direct Equalization Many states and provinces have authority and specific procedures for direct equalization. The advantage of direct equalization is that it can be applied to specified strata, such as property classes, geographic areas, and political subdivisions that fail to meet appraisal level performance standards (Dornfest [Journal of Property Tax Assessment and Administration, 2004]). Direct equalization also produces results that are generally more visible to the taxpayer and more clearly reduces perceived inequities between classes (*Standard on Property Tax Policy* [IAAO 2010]). For example, direct equalization allows proper and equal application of debt and tax rate limits and equitable partial exemptions. Direct equalization involves use of adjustment factors, which produce effects mathematically identical to those derived through the application of "trending" or "index" factors, which are commonly used for value updating by local assessing jurisdictions. The most significant differences typically are the level of the jurisdiction originating the adjustments and the stratification of property to which the factors are applied. Local jurisdictions with primary assessment responsibility can develop value adjustment factors as an interim step between complete reappraisals. Such factors
commonly are applied to properties by property type, location, size, age and other characteristics (see *Property Appraisal and Assessment Administration* [IAAO 1990, p. 310]). It is rare for equalization factors developed by oversight agencies to be applied to strata more specific than property class or broad geographic area. Often such factors are applied jurisdiction-wide. States and provinces that employ direct equalization techniques should understand that such equalization is not a substitute for appraisal or reappraisal. Direct equalization applied at the stratum level improves equality in effective tax rates between strata and lessens the effect of assessment practices that improperly favor one stratum over another. For example, assuming that all classes of property are to be assessed at 100% of market value, without such equalization, in a case where residential property is assessed at a median of 80% of market value, while commercial property is assessed at a median of 90% of market value, residential property will pay 80% of its proper tax share and commercial property will pay 90% of its proper tax share. Other classes that may be assessed at 100% will pay more than their proper tax shares. Direct equalization mitigates this problem. However, such equalization cannot improve uniformity between properties within a given stratum. So, in the previous example, the median level of assessment for residential property can be adjusted from 80% to 100% of market value, assessment dispari-ties between individual residential properties will not be addressed. For this reason, reappraisal orders should be considered as the primary corrective tool for uniformity problems, and direct equalization should be considered appropriate only if time or other constraints preclude such an approach. #### 2.2.2 Indirect Equalization The most common use of indirect equalization is to enable proper funding distribution, particularly for school districts. Such equalization provides an estimation of the proper tax base (acknowledging statutory constraints such as agricultural use value) despite appraisals that are higher or lower than legally required levels in certain jurisdictions. For example, if the assessed value of residential property in a jurisdiction is \$750 million, but a residential ratio study shows an assessment level of 75 percent, while the legally required level of assessment is 100 percent, an equalized value of \$1,000 million could be computed (\$750 million/0.75). This adjusted or equalized value would then be used to apportion payments or requisitions between the state or province and associated local governments. Indirect equalization results in fairer funding apportionment because the overall appraisal levels of the taxing jurisdictions tend to vary. If there were no equalization, the extent that a jurisdiction under- or overestimated its total tax base would result in over- or under-apportionment of funds. Indirect equalization does not correct under- or overvaluation between classes of property within a jurisdiction. It adjusts only a portion of the tax or sometimes only intergovernmental payments, is less visible to taxpayers, and often lacks checks and balances associated with direct equalization (see *Standard on Property Tax Policy* [IAAO 2010]). By adjusting governmental payments, tax rates, or partial exemptions, indirect equalization encourages taxing jurisdictions to keep their overall tax bases close to the required level. Whether used to equalize shared funding or tax rates, the degree of equalization of the property tax is more limited than with direct equalization. Indirect equalization generally is applied to or affects only a portion of the funding or property tax levy (perhaps the school general levy or city levy). Indirect equalization usually is applied to the jurisdiction, rather than to a stratum, and therefore resolves interjurisdictional discrepancies in assessment level. In addition, properties in strata with poor uniformity are affected disproportionately. For this reason, indirect equalization also is not a substitute for reappraisal. # 3. Steps in Ratio Studies Ratio studies conducted by oversight agencies generally follow the basic steps described for the assessor's office in Part 1, except that it is more important to adopt uniform procedures and be consistent in their application. # 3.1 Definition of the Purpose, Scope, and Objectives The first step in any ratio study is to determine and state clearly the reasons for the study. This crucial step of identifying the purpose of the study determines the specific goals, scope, content, depth, and required flexibility. # 3.2 Design of Study The most important design consideration is that the study sample be sufficiently representative of the population of properties or the distribution of values in the jurisdiction under review. For direct equalization the level of appraisal for property classes or strata subject to such equalization is the primary area of interest and the sample must be designed accordingly. Indirect equalization seeks to estimate the overall dollar value of the population, so the sample must be representative of that overall value and must reflect the disproportionate influences of high value properties. Performance monitoring is concerned with both level and uniformity, but typically involves sample design similar to that required in direct equalization. # 3.2.1 Level of Sophistication and Detail A basic design principle is to keep the study as simple as possible consistent with its purpose. Ratio studies are not all alike and should be tailored to an intended use. Data analysis has been made easier through computerization. Although every study does not require the same level of statistical detail, each ratio study should include measures of appraisal level, appraisal uniformity, and statistical reliability. Graphs, charts, or other pictorial representations can be useful tools for showing distributions and patterns in the data. There is no model ratio study design that can serve all jurisdictions or all situations equally well. Informed, reasoned judgment and common sense are required in the design of ratio studies. #### 3.2.2 Sampling A ratio study is a form of applied statistics, because the analyst draws conclusions about the appraisal of the universe (the entire jurisdiction) of properties based only on those that have sold during a given time period or appraisals selected for a random sample. The ratios constitute the sample that will be used to draw conclusions or inferences about the population. To determine the accuracy of appraisals within a jurisdiction with absolute certainty, it would be necessary for all properties in the population to have been sold in arm's-length, open-market transfers near the appraisal date or all properties would need to be appraised independently by the oversight agency. Since this is not possible, ratio studies must use samples and draw inferences or conclusions about the population from these samples. The number of parcels in the population (the jurisdiction or stratum) is not an important determinant of a statistically valid and reliable sample. 3.2.3 Determining the Composition of Samples In the design stage, the oversight agency must decide whether the ratio study sample should comprise sales (or asking prices when appropriate), independent appraisals, or a combination of the two. Each sample type has its advantages and disadvantages, as described below. #### 3.2.3.1 Sale Samples The advantages of using sale samples include the following: - Properly validated sales provide more objective indicators of market value than independent appraisals. - Using sales is much less expensive than producing independent appraisals. The disadvantages include the following: - Difficulty in collecting sales data in jurisdictions without disclosure documents - The oversight authority may not have control over the sales data collection and validation process - Influence of sales chasing can be difficult to detect or prevent - Samples of sales may not adequately represent the population of properties - An adequate sample size may not be achieved if sales data are scarce - Time adjustments are more critical when supplemental sales are included #### 3.2.3.2 Independent Appraisal Samples Independent appraisals also can be used instead of or in addition to sales for ratio study samples. (See section 8, "Appraisal Ratio Studies," in this part.) #### 3.2.3.3 Samples Combining Sales and Independent Appraisals The oversight agency can design and conduct ratio studies using samples comprised of sales and independent appraisals. In this approach, the combined advantages of sale samples and appraisal samples are realized. However, the disadvantage of combining sales and independent appraisals is the possible existence of some of the disadvantages of sale samples and/or appraisal samples (see Section 8.7). 3.3 Collection and Preparation of Market Data The reliability of a ratio study depends in part on how ac-curately the sales or independent appraisals used in the study reflect market values. For sales-based studies, oversight agencies should conduct an independent sales verification and screening program if resources permit. Alternatively, oversight agencies should develop audit criteria to review data submitted to qualify sales, corroborate representativeness and confirm adequate sample size. Audit decisions should accommodate needs of the agency and resources available. Independent appraisals used in ratio studies must comply with the appropriate sections of the *Uniform Standards of Professional Appraisal Practice* (USPAP; Appraisal Foundation 2010–2011), and reflect market values as of the date being studied. Most oversight agencies use property data collected by the local jurisdiction to develop their independent appraisals. In order to produce credible appraisals, the oversight agency must be
certain that the local jurisdiction accurately recorded the appropriate value-related property characteristics for each property it is independently appraising. Steps must be taken to ensure that errors in the database made by the local jurisdiction do not materially or significantly affect the conclusions or opinions of value developed by the oversight agency. #### 3.4 Stratification Stratification divides all the properties within the scope of the study into two or more groups or strata. Stratification facilitates a more complete and detailed picture of appraisal performance and can enhance sample representativeness Each type of property subject to a distinct level of assessment could constitute a stratum. Other property groups, such as market areas, school districts and tax units, could constitute additional strata. Strata should be chosen to be consistent with factors in the mass appraisal model. When the purpose of the study is to evaluate appraisal quality, flexibility in stratification is essential. The general goal is to identify areas in which the assessment levels are too low or lack uniformity and property groups for which additional reappraisal work may be required. In such cases, it also is highly desirable to stratify on the basis of more than one characteristic simultaneously. Stratification can help identify differences in level of appraisal between property groups. In large jurisdictions, stratification by market areas is generally more appropriate for residential properties, while stratification of commercial properties by either geographic area or property subtypes (e.g., office, retail, and warehouse/industrial) can be more effective. #### 3.5 Matching Appraisal Data and Market Data The physical and legal characteristics of each property used in the ratio study must be the same when appraised for tax purposes and when sold. This implies two essential steps. First, the property description for the sold parcel must match the appraised parcel. If a parcel is split between the appraisal date and the sale date, a sale of any of its parts should not be used in the ratio study. Second, the property rights transferred, permitted use, and physical characteristics of the property on the date of assessment must be the same as those on the date of sale. Properties with significant differences in these factors should be excluded from the ratio study. When statutory constraints are imposed on appraisal methods, the resulting assessment may be less than market value. In such cases a sales ratio study may not provide useful performance information. Constraints typically apply to land that qualifies for agricultural-use value, subsidized housing, mineral land, and timberland. Sales may include property of a type other than the type for which the ratio study analyses is intended. However, sales including more than minimal values of secondary categories are unlikely to be representative, even with adjustment. For example, a property that is predominantly commercial may include residential components. This sale can be included as representative of the commercial category. In this case, the numerator in the ratio calculation would be the total appraised value including the value of both the commercial and residential components. In a second example, for a ratio study of vacant land, the numerator in the ratio should reflect only the appraised value of the land. The sale price should be adjusted for the contributory value of the improvements or the sample should be excluded from further analysis. #### 3.5.1 Stratification for Equalization Studies Oversight agencies generally should define the strata prior to acquiring and compiling data for the ratio study. Predefined stratification is more transparent and enhances cooperation between the oversight agency and the jurisdiction appraising the property subject to equalization. In general, oversight agencies should not redefine the strata once they have been defined for equalization purposes, especially in the case of direct equalization. It is appropriate, however, to collapse strata to compensate for otherwise inadequate samples sizes. In addition, a reappraisal or equalization order can be targeted for specific problem areas that cause noncompliance at a broader level of aggregation. If value stratification is necessary, predefined strata may not be practical. # 3.5.2 Stratification for Direct Equalization Strata should be chosen consistent with operational requirements for the required level of equalization. Statistical issues in the determination of strata include the size of the population and resulting strata and the likely variability of the ratios in each stratum. Care must be taken not to over-stratify, that is, to create strata that are too small to achieve statistical reliability (see section 6, Sample Size" in part 1 and Sherrill and Whorton [1991]). No conclusion about stratum level or uniformity should be made from stratum samples that are unreliably small (resulting in unacceptably large margins of error). Ultimately, the degree of stratification is determined largely by available sales data, unless it is cost-effective and practical to add sufficient independent appraisals. If sufficient sales or appraisals are not available for a given stratum, it should be combined with similar strata. When strata are combined, provided there is no reason to suspect dissimilar ratios as evidenced by different level or uniformity measures, such combinations permit broader applicability of ratio study results and prevent ratio study analysis from becoming too focused on substrata with few sales or appraisals. When jurisdiction or category wide equalization actions are required, reliability of component strata is not an issue. # 3.5.3 Stratification for Indirect Equalization Indirect equalization develops an estimate of full market value, but assessed values of individual properties are not altered. Such studies can use a substantially different approach to stratification than ratio studies intended for performance evaluation or direct equalization. The purpose of stratification in this case is to minimize distortions due to different assessment levels, which can vary by property type, value range, geographic area, and other factors. If stratification creates a more representative sample, equal-ization decisions may be based on results from individual stratum. If the overall sample is representative of the population then equalization decisions should be based on overall sample results. A reasonable number of strata with small samples and larger margins of error can increase overall representativeness and may reduce the margin of error for the overall jurisdiction-wide sample. The primary level of stratification should ordinarily be by major property type (e.g., residential, commercial, and vacant land). If circumstances permit, a secondary level of stratification also is recommended. When relying on the weighted mean, the secondary level of stratification (substrata) should normally be value range. Higher-value properties can sell with a different frequency than low-value properties, and appraisal levels can vary between high and low-value properties. As a result, high-value properties can be oversampled (or undersampled) and, because of their high value, can exert a disproportionate influence on the weighted mean and resulting estimated value. Value stratification reduces distortion of the weighted mean caused by over or under-representation of value strata with different levels of appraisal. To properly develop and use value strata, the oversight agency needs each individual assessment in the study universe. If detailed value information is not available, the oversight agency should work with local taxing jurisdictions to obtain sufficient information. At a minimum, a questionnaire can be used to request the total value and number of parcels in predetermined value categories or quantiles (each range contains the same amount of value). In situations in which value stratification information is not available, or where property ratios are not significantly value-influenced, substrata can be created based on property subtype, geographic area, or other appropriate criteria. Stratification by these criteria corrects for differences in level of appraisal between substrata. In large jurisdictions, substratification by geographic areas generally is more appropriate for residential properties while sub-stratification by either geographic area or property subtypes (e.g., office, retail, and warehouse/industrial) can be appropriate for income-producing properties. When relying on the median and when sample sizes permit, it is appropriate to stratify within property class by whichever property characteristic is most likely to capture differences in appraisal levels. This characteristic can be geographic area, property subtype, or value range. Substratification by value range helps capture value-related differences in assessment levels, which (unlike the weighted mean) are not reflected in the median. # 3.6 Statistical Analysis When ratio studies are conducted for equalization purposes, confidence intervals and statistical tests can be used to determine whether it should be concluded at a given confidence level that appraisal performance or level requirements in a stratum (or jurisdiction) being tested meets or falls outside of mandated standards. Statistical tests can be used for comparisons among strata, provided the sample sizes are large enough that meaningful differ-ences are not missed (see section 6, "Ratio Study Statistics and Analyses"). #### 3.7 Evaluation and Use of Results Lack of independence between locally determined values and sale prices (sales chasing) or independent appraisals can subvert attempts to improve equity (direct equalization) and result in incorrect distribution of funds between states or provinces and local jurisdictions (indirect equalization).
To guard against these possibilities, oversight agencies should ensure that sold and unsold properties are appraised similarly. Also, appraisals used as substitutes for sales must reflect market value, and the oversight agency must take remedial measures in instances in which they do not (see section 9, "Estimating Performance of Unsold Properties", and Appendix D, "Sales Chasing Detection Techniques"). # 4. Timing and Sample Selection Ratio studies made by oversight and equalization agencies should be conducted at least annually. Where possible, ratio studies conducted by equalization agencies should use final values established at the local level, inclusive of changes made by local appeal boards up to that time. However, if local appraisers or boards "chase sales" or set values in a manner that is dissimilar to the way other property values have been set, the sample may not be sufficiently representative and should not be used without careful investigation and necessary adjustment. #### 4.1 Date of Analysis The date of analysis is a past year when appraisals from past years are being evaluated to avoid the effects of sales chasing. When prior-year assessments are used to gauge current performance (to avoid sales chasing), the results should be adjusted for any reappraisal activity or assessment changes that occurred in the population (net of new construction) between the prior and current years. Sale prices also should be adjusted to the assessment date to account for time trending. If the purpose of the study is equalization, using sales after the appraisal date (adjusted for time as necessary) helps en-sure the independence of appraisals and sales prices. A sales period spanning the appraisal date can be used if measures are taken to ensure the independence of appraisals made after the earlier sales. This approach has the advantage of reducing the importance of time adjustments. # **4.2 Representativeness of Samples** The design and conduct of ratio studies requires decisions that maximize representativeness within the constraints of available resources. In many kinds of statistical studies, samples are selected randomly from the population and from within each stratum to maximize representativeness. Ratio study samples based on independent appraisals can be randomly selected. Because sales are convenience samples and do not represent true random samples, care must be taken to maximize the representativeness of sales samples. A ratio study sample is considered sufficiently representative for direct equalization and mass appraisal performance evaluation when the distribution of ratios of properties in the sample reflects the distribution of ratios of properties in the population. A ratio study is considered sufficiently representative for indirect equalization when the distribution of ratios of dollars of property value in the samples reflects the distribution of ratios of dollars of property value in the population. Sales from areas or substrata in which the number of sales is disproportionately large can distort ratio study results by weighting level and uniformity indicators toward whatever conditions exist in the overrepresented area. To alleviate this problem and create better representativeness, large samples can be further stratified by - randomly selecting sales to be removed - isolating the overrepresented groups into substrata - redefining the time period for the overrepresented groups - weighting the data # 4.2.1 Maximizing Representativeness with Independent Appraisals For independent appraisal-based ratio studies, the application of random sampling techniques can help ensure that appraisal procedures used for the sampled properties are similar to the corresponding population. A well-designed random sampling plan also can help ensure that properties selected for independent appraisals are not concentrated in areas of high sales activity or associated with property types with higher turnover rates in the market. The USPAP competency rule requires appraisers to have both knowledge and experience required to perform specific appraisals. Independent single-property appraisals must be developed in compliance with Standard 1, must be reported in compliance with Standard 2, and must be reviewed in compliance with Standard 3 of USPAP. Most importantly, care must be taken to ensure that independent appraisals reflect market value as of the appraisal date. In-dependent mass appraisals must be developed and reported in compliance with Standard 6 of *USPAP*. #### 4.2.2 Very High-Value Properties Assessment jurisdictions often contain unique, very-high-value properties (for example, properties that constitute more than 10 percent of the value of a property class) that cannot reasonably be combined with other properties for purposes of the ratio study. For indirect equalization, high-value parcels are especially important to maximize representativeness. For instance, consider a population consisting of 1,000 properties, 999 of which range in value from \$20,000 to \$750,000, and one that is valued at \$1 billion (e.g., a power plant). If the intended use of the ratio study is to estimate the general level and uniformity of appraisal in regard to the typical property, the stratified population of parcels need not include the \$1 billion property. If the intended use of the ratio study is to estimate the total market value in the jurisdiction, however, exclusion of the power plant can distort the study. Very high-value properties should not be ignored or assumed to be appraised at the legal or general level for indirect equalization studies. An equalization agency should place very high-value property in a separate stratum to prevent distortion of the overall weighted mean or total estimated value. To value the property for ratio study purposes the equalization agency should use a recent properly adjusted sales price if available. If a recent sale is not available the agency should conduct an appraisal of such properties (this is the preferred option) or audit and adjust as necessary the values developed by the local jurisdiction. 5. Acquisition and Analysis of Sales Data The highest level of independence and objectivity in an equalization or performance monitoring ratio study requires independent sales validation. If resources are not available to achieve this level of sophistication, then a comprehensive audit program should be developed to review the validation and screening work of the local jurisdiction (see Appendix A, "Sales validation Guidelines"). # 5.1 Sale Adjustments for Statutorily Imposed Value Constraints Most states and provinces require appraisal of certain classes of property using statutorily prescribed methods of appraisal that are intended to produce a constrained value that is less than market value. The most common class of property to which such constraints apply is farmland and rangeland that qualifies for agricultural-use valuation. However, constraints may also apply to subsidized housing, mineral land, and other classes. When the purpose of the ratio study is direct or indirect equalization, sales prices must be adjusted as if the selling parcel were subject to the same constraints. If this cannot be done, independent appraisals, which employ the required constraints, should be used to determine the level of appraisal in a manner consistent with the statutory constraints. For example, assume that statutory restrictions require a fixed or artificially high capitalization rate to be used in determining farmland value. If unadjusted farmland sales were to be used, the resulting ratios would be low and could lead to improper equalization decisions. Instead, independent appraisals using the required capitalization rate should be done. These appraisals would lead to ratios that would correctly allow for the statutory constraint. Use of constrained values produces ratio study results that do not provide information on the true level of appraisal in relation to market value. Use of constrained values is appropriate for equalization. However, when the purpose of the ratio study is to determine the overall quality of assessments or the amount of benefit being awarded by a given statutory constraint on appraised value, the unadjusted sale price or independent market value appraisal must be used. Often, procedural audits can be used as adjuncts to more traditional ratio studies. These audits can be particularly effective when the purpose is to judge overall appraisal quality and when precise, quantitative statistical measures are not obtainable. #### **5.2 Outlier Ratios** Oversight agencies should consider the extent of sales verification when developing guidelines for trimming limits. In practice, this means that if an oversight agency derives sales data from assessing jurisdictions that may have already removed outliers from the sample, additional trimming may not be necessary (see Appendix B, "Outlier Trimming Guidelines"). #### 5.2.1 Value Outliers When the weighted mean is used for indirect equalization, a method that identifies high-value *influential* sales is recommended. Since an influential sale may not have an unusually low or high ratio relative to the rest of the sample, the definition of distortion is based on the principle that the point estimate calculated from the sample should not be statistically significantly different whether the suspect observation is in the sample or not. To test for an influential sale, one approach is to remove it from the sample and compute the weighted mean and associated confidence interval. If the weighted mean of the sample lies outside the confidence interval calculated without the influential sale, then the sale is truly influential and is a candidate for further scrutiny, isolation in a separate stratum, or possible trimming. This procedure is intended to test the presence of individual influential sales and is not intended to be used
successively after deletion of a sale, but can be applied to more than one apparent outlier at a time by leaving all other sales in the comparison group. Note, however, that the presence of multiple influential sales can indicate the start of a trend. Presence of influential sales is often associated with high price-related differential (PRD) values, which could be the result of systematic regressivity or progressivity. # 5.2.2 Outlier Trimming Statistics calculated from trimmed distributions, obviously, cannot be compared to those from untrimmed distributions or interpreted in the same way. This is especially problematic when making interjurisdictional comparisons. For this reason, oversight agencies may wish to promulgate uniform trimming procedures, based on sound statistical principles. Regardless of the chosen procedure, trimming of outliers must not occur more than once for any sample. # 6. Ratio Study Statistics and Analyses Ratio study measures covered in Part 1 are equally applicable to equalization ratio studies based upon sales or independent appraisals. See section 5.3, "Measures of Appraisal Level," and section 5.4, "Measures of Variability," in Part 1. # 6.1 Measures of Appraisal Level The median is the generally preferred measure of central tendency for direct equalization, monitoring of appraisal performance, or evaluation of the need for a reappraisal. The mean should not be used for indirect equalization if there are measurable differences in appraisal level of high- and low-value properties (see table 2-2). In data commonly containing outliers, the trimmed mean can be substituted for the mean (Gloudemans 1999, chapter 3). See Appendix B for outlier-trimming procedures. Because of its dollar-weighting feature, the weighted mean is most appropriately used in indirect equalization, when estimating the total dollar value of the jurisdiction. When relying on the measure, however, outliers should be carefully reviewed (and deleted if appropriate), since they can strongly affect the weighted mean, particularly when they occur for high-value properties and in small samples. #### 6.2 Overall Ratio for Combined Strata For purposes of oversight monitoring of overall appraisal performance and direct equalization, the generally preferred approach is to weight the median ratio of each stratum on the basis of the relative number of properties in the stratum. For indirect equalization, the weight assigned to a measure of central tendency of a stratum should be proportional to the share of that stratum's total estimated market value. Because the number of parcels bears only a loose relationship to dollar value, weighting by number of parcels is not appropriate for indirect equalization. For indirect equalization, the preferred method of calculating the overall market value of a jurisdiction is as follows: - 1. Divide the total appraised (or assessed) value of each stratum by the stratum sample's measure of central tendency (see section 6.3, "Contrasting Measures of Appraisal Level," in this part) to obtain an estimate of the total market value of taxable property in the stratum. - 2. Sum the estimates of total stratum market value to obtain an estimate of the total market value Table 2-1. Illustration of Combining Measures of Central Tendency (Example shown is for indirect equalization) | Data for properties in the study | | | | | | | |----------------------------------|-----------------------|-------------------|----------|---------------------------------|-----------------------------------|--| | Stratum | Total sample assessed | Total sample sale | Weighted | Total assessed value of stratum | Indicated market value of stratum | | | (1) | • | price | mean | (5) | (6) | | | Residential | \$3,000,000 | \$4,000,000 | 0.750 | \$600,000,000 | \$800,000,000 | | | All other | 950,000 | 1,000,000 | 0.950 | 400,000,000 | 421,000,000 | | | Total | | | | \$1,000,000,000 | \$1,221,000,000 | | Overall ratio = \$1,000,000,000,000/\$1,221,000,000 = 0.819 Table 2-2. Preferred Estimators | | Indirect | Direct | Monitoring | |----------|-------------|-------------|-------------------| | | Equalizatio | Equalizatio | Performanc | | Median | _ | X | X | | Mean | _ | _ | _ | | Weighted | X * | _ | _ | ^{*} Caution should be exercised when the sample contains value outliers or indicates value bias based on the PRDof taxable property in the jurisdiction or class of property. 3. To obtain an overall weighted level of assessment (or ratio), divide the total appraised (or assessed) value of the jurisdiction or class of property by the estimated total market value (table 2-1 contains a simplified example). # 6.3 Contrasting Measures of Appraisal Level Table 2-2 summarizes the preferred measures of central tendency for the three broad purposes of indirect equalization, direct equalization, and the general monitoring of appraisal performance. For indirect equalization, the preferred measure is the weighted mean (the measure used in table 2-1), because it gives equal weight to each dollar. This helps achieve an accurate estimate of total dollar value, the goal of indirect equalization. However, there are implicit difficulties in obtaining sales samples that are representative of all significant groups of properties with different ratios. The weighted mean can be disproportionately influenced by high-value properties, particularly in a small sales sample. A disproportionate influence of high-value properties can be reduced through value stratification within the property class. Such value stratification helps capture value-related ratio differences, as well as improve representativeness, regardless of which measure of central tendency is used. If there are provable valuerelated ratio differences within strata, the weighted mean must be used since the median is incapable of capturing value-related differences. In cases in which value stratification is not practicable, equalization agencies may stratify by some proxy for value, such as neighborhood or property sub-class. If results appear distorted by non-representative high-value sales, outlier identification methods described in Appendix B should be employed. While not conceptually preferred, the median can be used to prevent the disproportionate influence of high-value properties with outlier ratios. To be clear, although the median is not the conceptually appropriate measure, it nonetheless has the desirable property of smaller sampling variance and, in cases in which assessment regressivity/progressivity has not been found to be a significant concern, can provide an acceptable substitute for the weighted mean. If samples are known to be reasonably representative through outlier trimming, the use of stratification or selection of random appraisals, the weighted mean would be the (only) correct measure. In cases which sample representativeness is a concern due to small samples or outliers, the median can reasonably be used as long as the equalization agency has checked to ensure that there are no significant price-related biases within the strata used in the study. #### **6.4 Measures of Variability** Measures of dispersion or variability relate to the uniformity of the ratios and should be calculated for each stratum in the study. In general, the smaller the measure, the better the uniformity, but extremely low measures can signal one of the following: acceptable causes - extremely homogeneous properties - very stable markets - unacceptable causes - lack of quality control - calculation errors - poor sample representativeness - sales chasing Note that as market activity changes or as the complexity of properties increases, the measures of variability usually increase, even though appraisal procedures may be equally valid. #### **6.5 Measures of Reliability** It is good practice to calculate measures of reliability whenever the results of a ratio study are used for equalization. Measures of reliability will indicate whether there is a desired degree of confidence that a given level of appraisal has not been achieved. The most commonly used measure of ratio study sample reliability is the confidence interval. This interval brackets the unknown population parameter for any sample statistic with a specified (chosen) degree of confidence. When the interval includes a desired assessment level or a performance standard range around the desired level (see section 11 and Table 2-4), equalization adjustments are not warranted. Similarly, when the interval includes a maximum allowable COD (see Table 2-3), reappraisal or other action to correct poor uniformity is not warranted. # **6.6 Vertical Inequities** The measures of variability discussed in section 6.4 relate to "horizontal," or random, dispersion among the ratios in a stratum, regardless of the value of individual parcels. Another form of inequity can be systematic differences in the appraisal of low- and high-value properties, termed "vertical" inequities. When low-value properties are appraised at greater percentages of market value than high-value properties, assessment regressivity is indicated. When low-value properties are appraised at smaller percentages of market value than high-value properties, assessment progressivity is the result. Appraisals made for tax purposes should be neither regressive nor progressive. An index statistic for measuring vertical equity is the PRD, which is calculated by dividing the mean ratio by the weighted mean ratio. This statistic should be close to 1.00. Measures considerably above 1.00 tend to indicate assessment regressivity; measures below 1.00 suggest assessment progressivity. When samples are small or the weighted mean is heavily influenced by several extreme sales prices, however, the PRD may not be a sufficiently reliable measure of vertical inequities. A scatter plot of ratios versus appraised values or sale prices is a useful diagnostic tool. A downward (or upward) trend to
the data indicates systematic regressivity (or progressivity). If not sufficiently representative, extreme sales prices can be excluded in calculation of the PRD. Similarly, when samples are very large, the PRD may be too insensitive to show small pockets in which there is significant vertical inequity. Standards for evaluating the PRD are given in section 9.2.7 in this part. In addition, more powerful statistical tests for vertical inequities are available and should be employed to determine the significance of the indication provided by the PRD (see section 5.7 in this part and Twark, Everly and Downing [1989]). When these tests show vertical inequities, such inequities should be addressed through reappraisal or other corrective actions. In some cases, additional stratification can help isolate the problem. Measures of level computed for value strata should not be compared as a way of determining vertical inequity because of a boundary effect that is most pronounced in the highest and lowest strata (Schultz 1996). #### **6.7 Tests of Hypotheses** An appropriate test should be used whenever the purpose of a ratio study is implicitly or explicitly to test a hypothesis. A hypothesis is essentially a tentative answer to a question, such as, Are residential and commercial properties appraised at equal percentages of market value? A test is a statistical means of deciding whether the answer "yes" to such a question can be rejected at a given level of confidence. In this case, if the test leads to the conclusion that residential and commercial properties are not appraised at equal percentages of market value, some sort of corrective action on the part of assessing officials is clearly indicated. Appropriate tests are listed in table 1-2 and discussed in Gloudemans (1999), *Property Appraisal and Assessment Administration* (IAAO 1990), and *Improving Real Property Assessment* (IAAO 1978, 137–54) #### **6.8 The Normal Distribution** Many conventional statistical methods assume the sample data conform to the shape of a bell curve, known as the normal (or Gaussian) distribution. Performance measures based on the mean or standard deviation can be misleading if the study sample does not meet the assumption of normality. As a first step in the analysis, the distribution of sample ratios should be examined to reveal the shape of the data and uncover any unusual features. Although ratio study samples typically do not conform to the normal distribution, graphical techniques and numerical tests can be used to explore the data thoroughly. Traditional choices are the binomial, chi-square, and Lilliefors tests. Newer and more powerful procedures are the Shapiro-Wilk W, the D'Agostino-Pearson K^2 , and the Anderson-Darling A_2 tests (D'Agostino and Stephens 1986). # 7. Sample Size #### 7.1 Importance of Sample Size If it is desirable to create narrow, uniform margins of error in jurisdictions without sufficient sales, independent appraisals may be added. #### 7.2 Adequacy of a Given Sample Size The adequacy of a given sample size can be evaluated by computing measures of reliability. If the confidence interval is sufficiently narrow, the sample is large enough. If the confidence interval is too wide, the oversight authority must either accept less precision or enlarge the sample, if possible. #### 7.3 Required Sample Size Because designing for sampling objectives and planning for resource allocation in ratio studies must occur well before final ratio data sets are available and ratio study statistics are calculated, decisions on critical input variables must be made well before their true values are known. For example, the sample size formulas (Cochran 1977; Sherrill and Whorton 1991; and Gloudemans 1999) used to plan for specific margins of error and/or specific levels of confidence theoretically require, as input variables, the actual variation within the final ratio data sets (usually measured by the coefficient of variation). However, the actual variation in final ratio data sets is not known during the design and planning stage and, thus, the desired sample size must be projected based upon the best information available at the time of design and planning. This projection results in unavoidable forecast error and can result in the production of a higher or lower sample size than needed to reach sampling objectives. This issue is an ac-cepted part of conducting ratio studies when it is necessary and important to attain a predetermined or uniform degree of precision. In other cases, it may be acceptable to use all available qualified sales. When predetermination of sample size is important, the variation in the ratio data set from the most recent time period available can provide a reasonable estimate for the time period under analysis. ### 7.4 Remedies for Inadequate Samples In addition to recommendations discussed in section 6.4, "Remedies for Inadequate Samples," in Part 1, supple-mental independent appraisals can be combined with sales (also see section 8.7, "Combining of Sales and Appraisals," in this part). #### 7.5 History of Sales Reporting Oversight agencies that develop ratio studies from sales provided by local assessment jurisdictions should track the number of transfers obtained in different study periods. Quality control techniques can be used to measure market activity or to determine whether an assessor is fully reporting sales information. # 8. Appraisal Ratio Studies Appraisal ratio studies are conducted by using appraised values for a random sample of parcels. Such sampling plans can be designed to be more representative of the population in terms of property characteristics than a sales sample of the same size but require adequately trained appraisers and are comparatively expensive. Few ratio studies are based solely on independently conducted appraisals, which then are compared to values determined by assessing officials. Many equalization or oversight agencies, however, do ratio studies in which both sales and appraisals are combined. Furthermore, it may be possible to develop sales driven models for use in appraising a particular population of properties (excluding those not adequately represented in the underlying model) or randomly selected parcels for ratio study purposes (see *Standard on Automated Valuation Models*, [IAAO 2003]). Estimates of value developed for use in appraisal ratio studies are considered appraisal services and must comply with *USPAP* Standards 1 and 2 or Standard 6. #### 8.1 Rationale Independent appraisals can be used as indicators of market value. Independent appraisals are appraisals performed by appraisers who are not employees of the appraisal agency that is the subject of the study. Such appraisal ratio studies are particularly useful for property classes with limited sale data, such as commercial and industrial real property and personal property (see *Property Appraisal and Assessment Administration* IAAO 1990, appendix 1-1] and Gloudemans [1999, chapter 6]). In addition, appraisal ratio studies can be used for agricultural or other proper-ties not appraised on an ad valorem basis. In this case, the appraisals should reflect the use value or other statutory basis on which the properties are appraised. #### 8.2 Advantages and Disadvantages Appraisal ratio studies have both advantages and disadvantages. The advantages of appraisal ratio studies are • the ability to sample from areas or property types with insufficient sales information - a high degree of control in sample size that enables the analyst to treat jurisdictions equally, regardless of the availability of market information - the avoidance of non-representativeness stemming from the use of sales samples that may not represent the property population. - the size of the sample can be specified and - the initial sample can be randomly drawn, thus helping to maximize representativeness. If objectivity can be maintained, the appraisal ratio study avoids potential distortions due to systematic differences between appraisals of sampled and unsampled properties. In addition, independent appraisals can be used to test for systematic differences between appraisals of sold and unsold properties. A disadvantage of appraisal ratio studies is the extra time and cost involved with the independent appraisal process. The subject and any comparables should be physically inspected and the appraisals documented according to appropriate standards. Applicable USPAP guidelines should be followed. Independent single-property appraisals should be developed in compliance with *Standard 1*, should be reported in compliance with *Standard 3* of USPAP. Independent appraisals done with a mass appraisal model should be developed and reported in compliance with *Standard 6* of USPAP. Another disadvantage is that appraisals are an opinion of value. Accordingly, they should be documented and tested against the market. However, this becomes difficult when sales data are scarce. To reduce this disadvantage, appraisal ratio study analysts should ensure that appraisals are carefully reviewed and allow local appraisers to submit appraisal information that may affect the value conclusion (see *Standard on Administration of Monitoring and Compliance Responsibilities* [IAAO 2003]). Where adequate sales are available, independent appraisals should be checked for consistency with sales. # 8.3 Sample Selection and Resource Requirements Sample selection and resource planning in appraisal ratio studies require knowledge of statistical sampling, estimation principles, and available resources. Judgment must be used, because the determination of an adequate sample can require more information than is available during the design and planning phase, such as the actual variation within the final ratio data sets (see section 6.2, "Adequacy of a Given Sample Size," in Part 1). Moreover, the cost of the study increases with the size of the sample. Therefore,
the value of more reliable information must be balanced against the costs of obtaining that information. In determining the size of the sample for each stratum, the following should be taken into consideration: - 1. the required precision (typically measured by the margin of error) of the estimate of the appraisal level, for example, ± 0.05 - 2. the required confidence level, for example, 95 percent - 3. the amount of dispersion expected in the final ratio data set $\frac{1}{2}$ - 4. the wastage associated with properties that cannot be efficiently appraised or appraisals that cannot be used for one reason or another (see Gloudemans [1999, chapter 6] for sample size formulas and required input variables; also see Sherrill and Whorton [1991]). Once the desired size of an appraisal sample has been determined, the individual properties that will constitute the sample should be selected using a statistically valid sampling plan. Stratified random sampling is preferred. If value stratification is used, sample properties selected from value groups during resource planning can shift into other value groups before completion of the study, thus reducing the ultimate representativeness of the sample. Some appraisal parcels may need to be removed from the sample when anomalous conditions are discovered such as environmental contamination (sufficiently reliable valuations may be prohibitively difficult or resource intensive) or when the independent appraiser is not allowed access to the property. Any sample parcels that are voided or that shift from a stratum because of value changes should be replaced if possible. Appraisal ratio studies, as with sales ratio studies, require informed, reasoned judgment to maximize sample representativeness and statistical reliability. #### 8.4 Data Requirements and Appraisal Techniques The appraisal techniques selected for an appraisal ratio study should be consistent with accepted appraisal principles and practices. The appraisals should reflect the appraisal date in question and should be well documented. Statistical software should be used as much as possible to expand analytical capabilities and perform calculations. The appraisals used in appraisal ratio studies can be based on CAMA and automated valuation model (AVM) techniques (see Standard on Automated Valuation Models, [IAAO 2003]). The models used must be developed independently from those used for assessment purposes. Adequate market data and property characteristic data are required to develop reliable and defensible model estimates. If available, sales from a later period can be used to expand sample size. However, as in sales-based ratio studies, sales derived from primary assessing jurisdictions should be reviewed to ensure accuracy and validity. CAMA and AVM models have the advantage of reducing costs, permitting the use of larger, more representative samples. CAMA and AVM models developed for equalization must focus on the adequacy of overall, not individual, value or level of assessment estimates. Because the purpose of the appraisal is to make an *independent* value estimate, not audit the assessor's work, the appraisals should be made without knowledge of the assessor's value. Appraisers should *not* be supplied with copies of the assessor's appraisal work sheets or model information. Supervisors should spot-check and review the work of staff appraisers to ensure that the required independence is maintained. When the purpose of the ratio study is equalization or performance measurement, rather than internal quality assurance, the appraisals should not be revealed to the assessor until the assessor's values are final. #### 8.5 Appraisal Chasing Appraisal chasing can take two forms, either of which reduces or destroys the validity of the ratio study. The first occurs when an independent appraiser knows the local appraised value and either consciously or unconsciously biases the independent appraised value towards the local appraised value. Independent appraisers should not have access to the local appraiser's values or appraisal work papers prior to completing their appraisals. Also, independent appraisals should be reviewed and tested against the market. The second form of appraisal chasing occurs when the local appraisal jurisdiction knows which properties are in the ratio study appraisal sample and adjusts local appraised values on some or all of these properties to achieve better ratios without making similar adjustments to unsampled properties. This form of appraisal chasing is similar to sales chasing and has similar consequences (see Appendix D, "Sales Chasing Detection Techniques"). Ratio study analysts should guard against this form of appraisal chasing by withholding the release of sample information until the local appraisal office's values are final. If this form of appraisal chasing occurs, the oversight agency can use local values prior to adjustment to provide a more accurate representation of the population ratios. #### 8.6 Reviewing of Appraisals Appraisal supervisors should review appraisal models or individual single-property appraisals to ensure that USPAP and the agency's standards are met. It also is good practice to include some recently sold properties in the sample being appraised as a check on the validity of the methods being applied. In addition, the assessor must be afforded an opportunity to review the appraisals along with supporting documentation and to submit information supporting different value conclusions. If different value conclusions or factual information would materially affect the outcome of the study, a procedure for resolving conflicts, for example, by an independent review body, should be established. # 8.7 Combining of Sales and Appraisals Appraisals can be combined with valid sales in a ratio study. Using available sales adds objectivity to the study and reduces the required number of appraisals. On the other hand, combining sales and appraisals mixes two market indicators. If sales and appraisals are combined, an analysis should be performed to test the consistency of measures of central tendency derived from the sales ratios compared to the same measures derived from the appraisal ratios. A Mann-Whitney test comparing values per unit or comparing ratios based on sales with those based on appraisals is appropriate for this purpose. Significant differences can result from several of the following conditions: - 1. Sales have been chased. - 2. Sales and appraisals came from different geographic areas with different markets and different levels of appraisal (maximize representativeness by stratifying). - 3. Sales and appraisals have different property characteristics that cause different levels of appraisal. - 4. All or some of the sales are invalid. - 5. Outlier ratios are causing sale/appraisal ratio differences. - 6. All or some of the appraisals are inaccurate. If none of the first five conditions listed above apply, the appraisals should be tested against the market and revised as necessary (see Wooten, 2003). Variability measures computed on sales used in the sample should not be expected to be similar to variability measures computed on appraisals. Sales ratios reflect the vagaries of the marketplace. Appraisal ratios, on the other hand, come from comparing the results of one appraisal model (the oversight agency's) to the results of another (the assessing office's). If both parties use mass appraisal procedures, differences in appraisals between the two models should be less than when compared with sales; thus, variability measures based on appraisal ratios can be expected to be lower than those based on sales ratios as long as they represent properties with similar characteristics and similar degrees of appraisal difficulty. # 8.8 Average Unit Value Comparisons In addition to a traditional ratio study, "expert" appraisals can take the form of average unit values and be compared against the assessor's average unit value for the same parcels. In this technique, parcels are stratified into homogeneous groups, as they would be for appraisal purposes. Appropriate units of comparison are identified for each group, and average unit values are determined through an analysis of available sales, cost, and income data. The assessor's average unit values for the same strata are then calculated and the two averages are compared. Average unit value comparisons is well-rooted in mass appraisal theory and offers an alternative to the time and expense associated with the selection and appraisal of individual parcels. # 9. Estimating Performance for Unsold Properties The objective of a ratio study is to determine appraisal performance for the population of properties. As long as sold and unsold parcels are appraised in the same manner and the data describing them are coded consistently, statistics calculated in a sales ratio study can be used to infer appraisal performance for unsold parcels. However, if parcels that sell are selectively reappraised or recoded, based on their sale prices or some other criterion (such as listing price) and if such parcels are in the ratio study, sales ratio study uniformity inferences will not be accurate (appraisals will appear more uniform than they are). In this situation, measures of appraisal level will also be unsupportable unless similar unsold parcels were appraised by a model that produces the same overall percentage of market value (appraisal level) as the parcels that sold. Oversight agencies must ensure that sold and unsold parcels are appraised at the same level. Several techniques are available for determining whether assessors are selectively appraising sold parcels (see Appendix D, "Sales Chasing Detection Techniques," or *Property Appraisal and Assessment Administration* [IAAO 1990, appendix 20-2] and Gloude-mans [1999, chapter 6] for a more detailed discussion). If unsold properties within a properly specified group are not
appraised consistently with sold properties within the same group and according to applicable guidelines, unadjusted sales ratio results cannot be used. The oversight agency will have to adjust calculated results or conduct an alternative study. Once it is determined that *sales chasing* probably has occurred and probably is reducing the validity of ratio study statistical measures of level or uniformity, it is necessary to redo the ratio study to establish valid measures before any other recommendations, such as reappraisal or equalization action, can be made. If feasible, probably the best approach is to select a sample period that effectively precludes sales chasing. For example, when the lien or appraisal date is January 1, many jurisdictions use sales occurring before that date to make valuation decisions. To test the resulting valuations, it would be appropriate to use sales occurring after January 1 (or after the last date for changing assessments for the year in question), provided such data are time-adjusted (when necessary) backward to match the appraisal date. As a slight variation on this principle, earlier sales could be used, except when sales chasing is detected, in which case it is appropriate to switch to a later, post-appraisal-date sales period. Legal or practical constraints can prevent use of optimal sample periods in many cases. In these situations, it is important to determine the exact cause of the sales chasing. For example, if a large proportion of selling properties are appealed and if appeal boards typically adjust to sale price, the result is the same as sales chasing by the assessor. One solution is to use appraised values prior to the action of the appeal board, provided that the appeal adjustment is not merely the result of an atypical clerical or other error. Another approach is to use current sales prices and prior-year values, adjusted for reappraisal activity or assessment value changes in the population. The percentage increase or decrease in the prior-year's appraised values for the population (net of new construction) should be used to adjust the prior-year's values for the sample (Gloudemans 1999). # 10. Presentation of Findings, Documentation, and Training Oversight agencies should produce ratio studies in a manner that is transparent in all stages to all stakeholders. (See section 8, Part 1.) # 11. Ratio Study Standards Each state and province should have ratio study performance standards. These standards, summarized in table 2-3, are suggested for jurisdictions in which current market value is the legal basis for assessment. In general, when state and provincial standards are not met, reappraisal or other corrective measures should be taken or equalization procedures can be imposed. When an oversight agency orders such actions, the burden of proof should be on the agency to show that the standards have not been achieved. Table 2-3. Ratio study uniformity standards indicating acceptable general quality* | General Property Class | Jurisdiction Size /Profile /Market Activity | COD Range | |---------------------------------|--|-------------| | Residential improved (single | Very large jurisdictions / densely populated / newer properties / | 5.0 to 10.0 | | family dwellings, | Large to mid-sized jurisdictions / older & newer properties / less | 5.0 to 15.0 | | condominiums, manuf. | Rural or small jurisdictions / older properties / depressed | 5.0 to 20.0 | | Income-producing | Very large jurisdictions / densely populated / newer properties / | 5.0 to 15.0 | | properties (commercial, | Large to mid-sized jurisdictions / older & newer properties / less | 5.0 to 20.0 | | industrial, apartments,) | Rural or small jurisdictions / older properties / depressed | 5.0 to 25.0 | | | Very large jurisdictions / rapid development / active markets | 5.0 to 15.0 | | Residential vacant land | Large to mid-sized jurisdictions / slower development / less | 5.0 to 20.0 | | | Rural or small jurisdictions/ little development / depressed | 5.0 to 25.0 | | | Very large jurisdictions / rapid development / active markets | 5.0 to 20.0 | | Other (non-agricultural) vacant | Large to mid-sized jurisdictions / slower development / less | 5.0 to 25.0 | | land | Rural or small jurisdictions/ little development / depressed | 5.0 to 30.0 | These types of property are provided for general guidance only and may not represent jurisdictional requirements. *The COD performance recommendations are based upon representative and adequate sample sizes, with outliers trimmed and a 95% level of confidence. PRD standards are not absolute and may be less meaningful when samples are small or when wide variation in prices exist. In such cases, statistical tests of vertical equity hypotheses should be substituted. ^{*}Appraisal level recommendation for each type of property shown should be between 0.90 and 1.10. ^{*}PRD's for each type of property should be between 0.98 and 1.03 to demonstrate vertical equity. ^{*}CODs lower than 5.0 may indicate sales chasing or non-representative samples. All standards recommended in this section are predicated on the assumption that all practicable steps necessary to maximize representativeness and validity in the underlying ratio studies have been conducted. #### 11.1 Level of Appraisal The calculated measures of central tendency are point estimates and provide only an indication, not proof, of whether the level meets the appropriate goal. Confidence intervals and statistical tests should be used to determine whether the appraisal level differs from the established goal in a particular instance. A decision by an oversight agency to take some action (direct equalization, indirect equalization, reappraisal) can have profound consequences for taxpayers, taxing jurisdictions, and other affected parties. This decision should not be made without a high degree of certainty that the action is warranted. Conversely, a decision not to take action when action is needed can have equally profound consequences. Oversight agencies should weigh all the options and consider the issues discussed below when developing or revising a level-of-appraisal standard, and when developing equalization or other appraisal oversight procedures. # 11.1.1 Purpose of Level-of-Appraisal Standard Jurisdictions that follow the IAAO recommendation of annual reassessments and comply with USPAP standards should be able to develop mass appraisal models that maintain an overall ratio level of 100 percent (or very near thereto). The local assessor may be required to observe reappraisal cycles defined by a legal authority or public policy that can extend beyond one year. During extended cycles inflation or deflation can influence the overall ratio. The purpose of a performance standard that allows reasonable variation from 100 percent of market value is to recognize uncontrollable sampling error and the limiting conditions that may constrain the degree of accuracy that is possible and cost-effective within an assessment jurisdiction. Further, the effect of performance standards on local assessors must be considered in light of expectations of public policy and resources available. For these reasons, states or oversight agencies may adopt performance standards for appraisal level that allow some variance from the 100 percent goal of market value. # 11.1.2 Recommended Appraisal Level Standards for Direct and Indirect Equalization The performance standard adopted by an oversight agency should be a range around the legally required level of appraisal in a property class or an overall jurisdiction. This range should be 90 to 110 percent of the legally required level of appraisal for direct equalization or reappraisal, or 95 to 105 percent for indirect equalization. A smaller maximum range for indirect equalization is justified because taxpayers are not as comprehensively affected. Oversight agencies should adopt performance standards that are as close to the legally required level as can be justified given the local situation and taking into account the factors discussed herein. In addition to the above appraisal level standards, each class of property for which appraisal level standards have been defined must be within 5 percent of the overall level of appraisal of the jurisdiction (see section 11.2.3, "Uniformity among Strata," in this part). Both criteria must be met. #### 11.1.3 Confidence Intervals in Conjunction with Performance Standards By themselves, the calculated measures of central tendency provide only an indication, not proof, of whether the appraisal level meets the performance standard. So, the purpose of confidence intervals and similar statistical tests is to determine whether the appraisal level differs from the established performance standard in a particular instance. A conclusion of noncompliance requires a high degree of confidence, thus a 90 percent (two-tailed) or 95 percent (one-tailed) confidence interval should be used, except for small or highly variable samples as described in section 11.1.5, "Adjustment for High Variability and Small Samples," in this part. #### 11.1.4 Decision Model The oversight agency should determine whether the estimate is outside the acceptable range around the legal level of appraisal with a specified degree of statistical significance. The chosen interval should overlap the performance standard range of 90 percent to 110 percent in the case of direct equalization or measuring appraisal performance. For indirect equalization the chosen interval should overlap the performance standard range of 95 percent to 105 percent. If the confidence interval does not overlap any portion of the appropriate range, equalization is performed or reappraisal orders are issued. See table 2-4 for an example of the direct equalization or appraisal performance decision making process. # 11.1.5 Adjustments for High Variability and
Small Samples High variability, small sample size, or a combination of these factors often causes confidence intervals to become quite wide. Wide confidence intervals reflect the imprecision of the underlying statistic and can decrease the usefulness of performance measures. Also, wide confidence intervals can cause an inequitable situation in which jurisdictions with small samples and large variability are never subject to equalization or reappraisal orders, while jurisdictions with larger samples and much less variability are more likely to be subject to such orders even though their appraisal performance may be arguably better. For these reasons, oversight agencies should consider expanding sample sizes by taking steps to increase the number of sales or by making independent appraisals (see section 7.4 part 2). If the sample size cannot be increased, two options may be considered when the point estimate fails to achieve compliance but the confidence interval overlaps the range of compliance: - If a particular point estimate does not meet the standard for the current study cycle the oversight agency may reduce the level of confidence by 5% the following year. This may be followed by an annual stepwise reduction of 5%. Such a reduction may continue to a 70 percent level of confidence if the point estimate fails to meet the compliance threshold over this period of time. Corrective action would be imposed when a given year's confidence interval fails to include the performance standard range. - The oversight agency may examine statistical point estimates over several study cycles. A jurisdiction that fails to meet a particular point standard for 5 consecutive years has a probability of less than 5% that compliance has been achieved, even if the confidence interval overlaps the compliance threshold every year. In such cases the oversight agency would impose corrective decisions based upon the point estimate. # 11.1.6 Calculating Equalization Adjustments If noncompliance with either direct or indirect equalization standards is indicated, the appropriate point estimate (statistic) measuring appraisal level should be used to calculate adjustment factors, by dividing it into 100 percent. ## 11.2 Appraisal Uniformity Assuming the existence of an adequate and sufficiently representative sample, if the uniformity of appraisal is unacceptable, reappraisal should be undertaken regardless of the level of appraisal. The oversight agency should recognize that the COD is a point estimate and cannot be accepted as proof of assessment uniformity problems without an appropriate degree of statistical confidence. Such proof can be provided by recognized statistical tests, including bootstrap confidence intervals. If the data are normally distributed, the COV and confidence intervals around this measure also can be determined. Then the COV can be mathematically converted into an equivalent COD. # 11.2.1 Oversight Uniformity Standards Oversight agencies should establish uniformity standards for local assessment jurisdictions. Any COD performance standards applied to strata within a particular jurisdiction should be related to the overall size, profile of property characteristics (type, age, condition, and obsolescence) and market activity. In general, tighter uniformity standards can be applied to larger jurisdictions with newer construction and active markets. And generally, less stringent uniformity standards should be applied to older, economically depressed or less densely developed areas with less efficient markets. Standards should also be relaxed in jurisdictions that experience economic instability due to sudden changes in supply or demand factors. In developing uniformity standards, oversight agencies should consider reasonable tolerance ranges in making compliance decisions. #### 11.2.2 Multi-level Uniformity Standards The uniformity standards presented in table 2-3 are defined in terms of the COD (point estimate) measure and are intended to apply to ratio studies based on sales, not those based on independent appraisals in which lower CODs often are typically observed. If reliability measures are not employed, sample size will play a critical role in setting the maximum acceptable COD. In addition, in unusually homogeneous or restrictive markets or for properties subject to use-value or similar constrained value assessment, low CODs also can be anticipated. In all other cases, CODs less than 5 percent should be considered unusual and possibly indicative of non-representative samples or the selective reappraisal of sold parcels. The COD standards in table 2-3 may not be applicable to property strata in unique, depressed, or rapidly changing markets. In such cases, assessment administrators may be able to develop target standards based on an analysis of past performance or results in similar markets elsewhere. Such an analysis can be based on ratio study results for the past five years or more. # 11.2.3 Uniformity among Strata Although the goal is to achieve an overall level of appraisal equal to 100 percent of the legal requirement, ensuring uniformity in appraisal levels among strata is also important. Table 2-4. Ratio Study Standards and Decision Making—Direct Equalization or Appraisal Performance Using Median 90%–110% Standard Example demonstrating application of standard at a 95% level of confidence | Case | Point | Confidence Interval
(CI) Width | CI Overlaps
Performance | Point Estimate in
Performance | Equalization
Action or | |------|-------|-----------------------------------|----------------------------|----------------------------------|---------------------------| | 1 | 92% | 86% to 101% | yes | yes | no | | 2 | 88% | 81% to 95% | yes | no | no | | 3 | 84% | 79% to 88% | no | no | yes | The level of appraisal of each stratum (class, neighborhood, age group, market areas, and the like) should be within 5 percent of the overall level of appraisal of the jurisdiction. For example, if the overall level of appraisal of the jurisdiction is 1.00, but the appraisal level for residential property is 0.93 and the appraisal level for commercial property is 1.06 the jurisdiction is not in compliance with this requirement. This test should be applied only to strata subject to compliance testing. The oversight agency can conclude that this standard has been met if 95 percent (two-tailed) confidence intervals about the chosen measures of central tendency for each of the stratum fall within 5 percent of the overall level of appraisal calculated for the jurisdiction. Using the above example, if the upper confidence limit for the level of residential property is 0.97 and the lower confidence limit for commercial property is 1.01, the two strata are within the acceptable range. #### 11.2.4 Vertical Equity PRDs should be between 0.98 and 1.03. The reason this range is not centered on 1.00 relates to an inherent upward bias in the arithmetic mean (numerator in the PRD) that does not equally affect the weighted mean (denominator in the PRD). When samples are small, have high dispersion, or include properties with extreme values, the PRD may not provide an accurate indication of assessment regressivity or progressivity. Similar considerations apply to special-purpose real property and to personal property. It is good practice to perform an appropriate statistical test for price-related biases before concluding that they exist (see table 1-2 in Part 1). #### 11.3 Natural Disasters and Ratio Study Standards Natural disasters such as earthquakes, floods, and hurricanes can have a substantial impact on the conduct of ratio studies and the interpretation and use of the results, and in general, they: - increase the difficulty of accurately identifying the physical and economic characteristics of property on the dates of sale/lease and the date of appraisal - increase the difficulty of producing sufficiently reliable appraised values (numerators) - decrease the availability of usable sales and other market data - increase the difficulty of identifying and obtaining such usable data - increase the difficulty of producing sufficiently reliable independent appraisals - increase the difficulty of accurately matching the characteristics of numerators with those of denominators These potential problems can result from extraordinary changes in market conditions and in the physical and economic characteristics of property between the dates of sale/ lease and the date of appraisal. As a result of these potential problems, a number of unreliable sample properties may need to be voided and usable sample sizes can be reduced significantly. All of these factors should be considered when ratio study standards are applied to ratio study results from areas substantially affected by natural disasters, but such consideration must not result in unwarranted relaxation of applicable standards. When faced with such situations, oversight agencies must use informed, reasoned judgment and common sense to produce a sufficiently reliable ratio study, based upon the best information available. # 12. Personal Property Studies Most personal property ratio studies performed by oversight agencies are performed for equalization purposes. Because indirect equalization in particular requires overall estimation of value, it is imperative for these ratio studies to focus on large accounts. Horizontal equity requires similar levels of appraisal between real and personal property. Sales data for personal property are difficult to obtain and analyze because markets for personal property are generally less visible and more difficult to follow than real property markets. Therefore, performance reviews and appraisal ratio studies should be used in place of sales ratio studies to determine the quality of appraisal of personal property. The performance review does not quantify assessment conditions but can determine general assessment quality. The appraisal ratio study
can be used to determine the level and uniformity of assessment for personal property. # 12.1. The Performance Review The performance review is an empirical study that evaluates the assessment method used and the ability of the jurisdiction to meet its legal requirement in the assessment of personal property. This type of study can be used to allocate tax dollars in multijurisdictional funding calculations or equalization by assuming that jurisdictions passing the performance review are assessing personal property at the general level of other classes of property analyzed with ratio studies. #### *12.1.1. Discovery* The jurisdiction must have the ability to discover the owners or users of taxable personal property within the jurisdiction. This is accomplished using phone books, business/occupational licenses, listings, sales tax rolls, and field reviews (see IAAO Course 500, "The Assessment of Personal Property," and *Standard on Valuation of Personal Property* [IAAO 2005] for a complete list). #### 12.1.2. Valuation Personal property is valued by using acceptable schedules and methods including depreciation schedules published by nationally recognized valuation firms, market data from published valuation guides, and other generally accepted valuation methods and acceptable adjustments (see Standard on Valuation of Personal Property). # 12.1.3. Verification Inclusiveness of personal property returns and reports should be verified by an audit program. The audit program should focus on larger and complex accounts; however, it also should include randomly selected accounts. The audit program should provide coverage of the entire tax base regardless of the jurisdiction's reappraisal cycle. #### 12.1.4 Forms and Renditions Comprehensive forms supplied by the assessment authority should allow the taxpayer to disclose fully all assessable personal property. The tax laws should require mandatory compliance, with meaningful penalties for noncompliance. # 12.2. Appraisal Ratio Studies for Personal Property The appraisal ratio study produces an estimate of the level of assessment of personal property by developing a ratio for property that is on the tax roll through the use of appraisals. The level of assessment determined in this way can be adjusted downward to account for property that has not been assessed. #### 12.2.1 Assessment Ratio for Personal Property Personal property market values are usually derived from appraisals using a replacement cost new less depreciation (RCNLD) approach (see IAAO Course 500). A comparison of the depreciation schedules in use to nationally accepted schedules would enable the calculation of a ratio for property on the roll. A statistically sound process should be used to select a sample that is representative of personal property on the tax rolls. Such a sample can be parcel- or value-based depending on the intended use of the ratio study in indirect or direct equalization. #### 12.2.2 Stratification Proper stratification of personal property accounts should be done for greater statistical accuracy. Strata should be based on the type and value of personal property accounts. Stratification by type of account should occur first. Personal property accounts can be divided into residential (motor vehicles, boats, aircraft, and the like), agriculture, and business accounts. Further stratification can occur in residential and agricultural accounts but is necessary in business or commercial accounts. Business accounts are usually stratified by size into a minimum of four groups. Value ranges for these groups should be derived from the value ranges in the local market. One example would be small (less than \$250,000), medium (\$250,000 to \$1 mil-lion), moderate (\$1-\$5 million), and large (greater than \$5 million). Individual size of account can be determined by value on the prior-year personal property roll. #### 12.2.3 Property Escaping Assessment Personal property is particularly prone to escaping assessment. Some determination should be made about the portion of taxable personal property not on the assessment roll. However, estimates based on national averages are less meaningful at the local jurisdictional level. # 12.2.3.1 Identifying Personal Property Owners and Users Not on the Roll Discovery tools can be used to determine accounts not on the roll for a sample area or group. Once the extent of the problem is identified, a projection can be made of the percentage of personal property not identified on the assessment roll. #### 12.2.3.2 Identifying Personal Property Not Included in Taxpayer Returns/Reports The accepted method of determining the property omitted in taxpayer returns/reports is to audit the account (see IAAO workshops on auditing). The audit results are applied back to the account value. The resulting fraction is property that is escaping taxation within that particular personal property account. If appropriate sampling techniques are used in selecting the accounts for audit, the resulting ratio is applied to the total roll to help determine the percentage of personal property escaping assessment within the jurisdiction. #### 12.2.4 Computing the Level of Appraisal The overall ratio is then determined by reducing the valuation ratio by the percent of property wholly or partially escaping taxation. For example, if the appraisal level is found to be 90 percent and it is determined that 5 percent of personal property is escaping assessment, then the corrected level of assessment is the appraisal level times the percentage of personal property assessed: $0.90 \times (1-0.05) = 0.855$. For indirect equalization, this calculation would result in a higher equalized value. # Standard on Ratio Studies # **Definitions** Absolute value. The value of a number (or variable) regardless of its sign. For example, 3 and -3 (minus 3) both have an absolute value of 3. The mathematical symbol for absolute value is one vertical bar on each side of the number in question, for example, |3|. Accuracy. The closeness of a measurement, computation, or estimate to the true, exact, or accepted value. Accuracy also can be expressed as a range about the true value. *See also* precision *and* statistical accuracy. Adjusted sale price. The sale price that results from adjustments made to the stated sale price to account for the effects of time, personal property, financing, or the like. Appraisal. "The act or process of developing an opinion of value; an opinion of value" (USPAP 1999). The act of estimating the money value of property. The money value of property as estimated by an appraiser. Appraisal date. The date as of which a property's value is estimated. See also assessment date. Appraisal ratio. (1) The ratio of the appraised value to an indicator of market value. (2) By extension, an estimated fractional relationship between the appraisals and market values of a group of properties. *See also* level of appraisal. Appraisal ratio study. A ratio study using independent expert appraisals as indicators of market value. Appraisal-sale price ratio. The ratio of the appraised value to the sale price (or adjusted sale price) of a property; a simple indication of appraisal accuracy. Appraised value. The estimate of the value of a property before application of any fractional assessment ratio, partial exemption, or other adjustments. Arithmetic mean. A measure of central tendency. The result of adding all the values of a variable and dividing by the number of values. For example, the arithmetic mean of 3, 5, and 10 is 18 divided by 3 or 6. Array. An ordered arrangement of data, such as a listing of sales ratios, in order of magnitude. Assessed value. (1) A value set on real estate and personal property by a government as a basis for levying taxes. (2) The monetary amount at which a property is put on the assessment roll for purposes of computing the tax levy. Assessed values differ from the assessor's estimate of actual (market) value for four major reasons: fractional assessment ratios, partial exemptions, preferential assessments, and decisions by assessing officials to override market value. Assessment. (1) In general, the official acts of determining the amount of the tax base. (2) As applied to property taxes, the official act of discovering, listing, and appraising property, whether performed by an assessor, a board of review, or a court. (3) The value placed on property in the course of such act. Assessment-appraisal ratio. The ratio of the assessed value of a property to an independent appraisal. Assessment date. The status date for tax purposes. Appraised values reflect the status of the property and any partially completed construction as of this date. Assessment progressivity (regressivity). An appraisal bias such that high-value properties are appraised higher (or lower) than low-value properties in relation to market values. *See also* price-related differential. Assessment ratio. (1) The fractional relationship of an assessed value to the market value of the property in question. (2) By extension, the fractional relationship of the total of the assessment roll to the total market value of all taxable property in a jurisdiction. *See also* level of assessment. Assessment-sale price ratio. The ratio of the assessed value to the sale price (or adjusted sale price) of a property. Assessor. (1) The head of an assessment jurisdiction. Assessors can be either elected or appointed. In this standard the term is sometimes used collectively to refer to all assessment officials charged with administering the assessment function. (2) The public officer or member of a public body whose duty it is to make the original assessment. Average deviation. The arithmetic mean of the absolute deviations of a set of numbers from a measure of central tendency such as the median. Taking absolute values is generally understood without being stated. The average deviation of the numbers 4, 6, and 10 about their median
(6) is $(2 + 0 + 4) \div 3 = 2$. The average deviation is used in computing the coefficient of dispersion (COD). Bias. A type of nonsampling error in which a calculated statistic differs systematically from the population parameter. A process is biased if it produces results that vary systematically with some factor that should be irrelevant. In assessment administration, assessment progressivity (regressivity) is one kind of possible bias. Bootstrap. A computer-intensive method of statistical inference that is based on a repeated resampling of data to provide more information about the population characteristics. The bootstrap is a data-driven procedure that is particularly useful for confidence interval approximation when no traditional formulas are available or the sample has been drawn from a population that does not conform to the normal distribution. #### CAMA. See computer-assisted mass appraisal Central tendency. (1) The tendency of most kinds of data to cluster around some typical or central value, such as the mean or median. (2) By extension, any or all such statistics. Some kinds of data, however, such as the weights of cars and trucks, may cluster about two or more values, and in such circumstances the meaning of central tendency be-comes unclear. This may happen in ratio studies in which two or more classes of property are combined. Class. A set of items defined by common characteristics. (1) In property taxation, property classes such as residential, agricultural, and industrial may be defined. (2) In assessment, building classification systems based on type of building design, quality of construction, or structural type are common. (3) In statistics, a predefined category into which data may be put for further analysis. For example, ratios may be grouped into the following classes: less than 0.500, 0.500 to 0.599, 0.600 to 0.699, and so forth. #### COD. See coefficient of dispersion. Coefficient of concentration. The percentage of observations falling within a specified percentage (say, 15 percent) of a measure of central tendency. Coefficient of dispersion (COD). The average deviation of a group of numbers from the median expressed as a percentage of the median. In ratio studies, the average percentage deviation from the median ratio. Coefficient of variation (COV). A standard statistical measure of the relative dispersion of the sample data about the mean of the data; the standard deviation expressed as a percentage of the mean. Computer-assisted mass appraisal (CAMA). A process that uses a system of integrated components and software tools necessary to support the appraisal of a universe of properties through the use of mathematical models that represent the relationship between property values and supply/demand factors. Confidence interval. A range of values, calculated from the sample observations, that are believed, with a particular probability, to contain the true population parameter (mean, median, COD). The confidence interval is not a measure of precision for the sample statistic or point estimate, but a measure of the precision of the sampling process (see reliability). Confidence level. The degree of probability associated with a statistical test or confidence interval, commonly 90, 95, or 99 percent. For example, a 95 percent confidence interval implies that were the estimation process repeated again and again, then 95 percent of the calculated intervals would be expected to contain the true population measure (such as the median, mean, or COD). Contributory value. The amount a component of a property contributes to the total market value. For improvements, contributory value must be distinguished from costs. #### COV. See coefficient of variation. Date of sale (date of transfer). The date on which the sale was consummated. This is considered to be the date the deed, or other instrument of transfer, is signed. The date of recording can be used as a proxy if it is not unduly delayed as it would be in a land contract. Direct equalization. The process of converting ratio study results into adjustment factors (trends) and changing locally determined appraised or assessed values to more nearly reflect market value or the legally required level of assessment. *See also* equalization and indirect equalization. Dispersion. The degree to which data are distributed either tightly or loosely around a measure of central tendency. Measures of dispersion include the range, average deviation, standard deviation, coefficient of dispersion, and coefficient of variation. Distribution-free statistics. A set of robust nonparametric methods whose interpretation or reliability does not depend on stringent assumptions about the distribution of the underlying population from which the sample has been drawn. *See also* parametric statistics. Equalization. The process by which an appropriate governmental body attempts to ensure that property under its jurisdiction is assessed at the same assessment ratio or at the ratio or ratios required by law. Equalization can be undertaken at many different levels. Equalization among use classes (such as agricultural and industrial property) can be undertaken at the local level, among properties in a school district and a transportation district; equalization among counties is usually undertaken by the state to ensure that its aid payments are distributed fairly. See also direct equalization and indirect equalization. Exploratory data analysis. That part of statistical practice concerned with reviewing the data set to isolate structures, uncover patterns, or reveal features that may improve the confirmatory analysis. Fixture. An asset that has become part of real estate through attachment in such a manner that its removal would result in a loss in value to either the asset or the real estate to which the asset is affixed. Fractional assessments. Assessments that by law or by practice have assessment ratios different from 1. Usually the assessment ratio is less than 1, and if assessment biases are present, different classes of property may have different fractional ratios. Frequency distribution. A table or chart showing the number or percentage of observations falling in the boundaries of a given set of classes. Used in ratio studies to summarize the distribution of the individual ratios. *See also* class *and* histogram. Histogram. A bar chart or graph of a frequency distribution in which the frequencies of the various classes are indicated by horizontal or vertical bars whose lengths are proportional to the number or percentage of observations in each class. Hypothesis. A statement in inferential statistics, the truth of which the analyst is interested in determining. Independent appraisal. An estimate of value using a model different from that used for assessment purposes. Independent appraisals are used to supplement sales in sales ratio studies or in appraisal ratio studies. Indirect equalization. The process of computing hypothetical values that represent the oversight agency's best estimate of taxable value, given the legally required level of assessment or market value. Indirect equalization allows proper distribution of intergovernmental transfer pay-ments between state or provincial and local governments despite different levels of appraisal between jurisdictions or property classes. *See also* equalization *and* direct equalization. Interquartile range (IQR). The result obtained by subtracting the first quartile from the third quartile. By definition 50 percent of the observations fall within the IQR. Land contract. An executor's contract for the purchase of real property under the terms of which legal title to the property is retained by the vendor until such time as all conditions stated in the contract have been fulfilled; commonly used for installment purchase of real property. Level of appraisal. The common, or overall, ratio of appraised values to market values. Three concepts are usually of interest: the level required by law, the true or actual level, and the computed level based on a ratio study. Level of assessment. The common or overall ratio of assessed values to market values. *See also* level of appraisal. *Note:* The two terms are sometimes distinguished, but there is no convention determining their meanings when they are. Three concepts are commonly of interest: what the assessment ratio is legally required to be, what the assessment ratio for the population actually is, and what the assessment ratio for the population seems to be, on the basis of a sample and application of inferential statistics. When level of assessment is distinguished from assessment ratio, *level of assessment* usually means either the legal requirement or the true ratio, and *assessment ratio* usually means the true ratio or the sample statistic. Margin of error. A measure of the uncertainty associated with statistical estimates of a parameter. It is typically linked to consumer surveys or political poll questions. A margin of error is a key component of a confidence interval. It reports a "plus or minus" percentage or proportion quantity in a confidence interval at a specified level of probability (typically 95 percent). *See also* confidence interval. Market value. The major focus of most real property appraisal assignments. Both economic and legal definitions of market value have been developed and refined. A current economic definition agreed upon by agencies that regulate federal financial institutions in the United States is: The most probable price (in terms of money) which a property should bring in a competitive and open market under all conditions requisite to a fair sale, the buyer and seller each acting prudently and knowledgeably, and assuming the price is not affected by undue stimulus. Implicit in this definition is the consummation of a sale as of a specified date and the passing of title from seller to buyer under conditions whereby: The buyer and
seller are typically motivated; Both parties are well informed or well advised, and acting in what they consider their best interests; A reasonable time is allowed for exposure in the open market; Payment is made in terms of cash in United States dollars or in terms of financial arrangements comparable thereto; The price represents the normal consideration for the property sold unaffected by special or creative financing or sales concessions granted by anyone associated with the sale. (See USPAP for additional comments.) Mass appraisal. The process of valuing a universe of properties as of a given date using standard methodology, employing common data, and allowing for statistical testing (see *USPAP*) Mean. See arithmetic mean. Median. A measure of central tendency. The value of the middle item in an uneven number of items arranged or arrayed according to size; the arithmetic average of the two central items in an even number of items similarly arranged. Median absolute deviation. The median of the absolute deviations from the median. In a symmetrical distribution, the measure approximates one-half the IQR. Median percent deviation. The median of the absolute percent deviations from the median; calculated by dividing the median absolute deviation by one-hundredth of the median. Nonparametric statistics. See distribution-free statistics. Nonsampling error. The error reflected in ratio study statistics from all sources other than sampling error. While nonsampling error is unavoidable due to the inefficiencies inherent in real property markets, the imperfections of the appraisal process, and the imperfections of conducting ratio studies, all practicable steps must be taken to minimize nonsampling error in ratio studies. Normal distribution. A theoretical distribution often approximated in real world situations. It is symmetrical and bell-shaped; 68 percent of the observations occur within one standard deviation of the mean and 95 percent within two standard deviations of the mean. Observation. One recording or occurrence of the value of a variable, for example, one sale ratio among a sample of sales ratios. Outliers. Observations that have unusual values, that is, differ markedly from a measure of central tendency. Some outliers occur naturally; others are due to data errors. Parameter. Numerical descriptive measure of the population, for example, the arithmetic mean or standard deviation. Parameters are generally unknown and estimated from statistics calculated from a sample of the population. Parametric statistics. Statistics whose interpretation or reliability depends on the distribution of the underlying data. *See also* distribution-free statistics. Percentile. The values that divide a set of data into specified percentages when the data are arrayed in ascending order. The tenth percentile includes the lowest 10 percent of the values, the twentieth percentile includes the lowest 20 percent of the values, and so forth. Personal property. See property. Plottage value. The excess of the value of a large parcel of land formed by assemblage over the sum of the values of the unassembled parcels. Point estimate. A single numerical value that can be used to estimate a population parameter. It is calculated on the basis of information collected from a sample. Point estimates are generally constructed to provide the best unbiased estimate of the population parameter consistent with the sample data. However, the point estimate is only an estimate, and is unlikely to have the same value as the population parameter. (See Confidence interval and Reliability for discussion of precision of the sampling process.) Points. Prepaid interest on a loan; one point is equal to 1 percent of the amount of the loan. It is common to deduct points in advance of the loan, so that an individual pays interest on 100 percent of the loan but gets cash on, say, only 99 percent. Population. All the items of interest, for example, all the properties in a jurisdiction or neighborhood; all the observations in a data set from which a sample may be drawn. Precision. The level of detail in which a quantity or value is expressed or represented. It can be characterized as the number of digits used to record a measurement. A high level of represented precision may be used to imply a greater level of accuracy; however, this relationship may not be true. Precision also relates to the quality of an operation or degree of refinement by which results are obtained. A method of measurement is considered precise if repeated measurements yield the same or nearly the same numeric value. *See also* accuracy *and* statistical precision. PRD. See price-related differential. Price. The amount asked, offered, or paid for a property. (See USPAP [2004] for additional comments.) Price-related differential. The mean divided by the weighted mean. The statistic has a slight bias upward. Price-related differentials above 1.03 tend to indicate assessment regressivity; price-related differentials below 0.98 tend to indicate assessment progressivity. Progressivity. See assessment progressivity (regres-sivity). Property. An aggregate of things or rights to things. These rights are protected by law. There are two basic types of property: real and personal. Real property consists of the interests, benefits, and rights inherent in the ownership of land plus anything permanently attached to the land or legally defined as immovable; the bundle of rights with which ownership of real estate is endowed. To the extent that "real estate" commonly includes land and any permanent improvements, the two terms can be understood to have the same meaning. Also called *realty*. Personal property is defined as those items that generally are movable or all items not specifically defined as real property. Many states include as personal property the costs associated with placing personal property in service, such as sales tax, freight, and installation. Installation items include, but are not limited to, wiring, foundations, hookups, and attachments. Two commonly used tests for distinguishing real and personal property are (1) the intent of the parties and (2) whether the item may be removed from the real estate without damage to either. Qualified sale. A property transfer that satisfies the conditions of a valid sale and meets all other technical criteria for inclusion in a ratio study sample. If a property has undergone significant changes in physical characteristics, use, or condition in the period between the assessment date and sale date, it would not technically qualify for use in ratio study. Quartiles. The values that divide a set of data into four equal parts when the data are arrayed in ascending order. The first quartile includes the lowest quarter of the data, the second quartile, the second lowest quarter, and so forth. Random sample. A sample of n items selected from a population in such a way that each sample of the same size is equally likely. This also includes the case in which each element in the sample has an equal chance of being selected. Range. (1) The maximum value of a sample minus the minimum value. (2) The difference between the maximum and minimum values that a variable may assume. Ratio study. A study of the relationship between appraised or assessed values and market values. Indicators of market values may be either sales (sales ratio study) or independent "expert" appraisals (appraisal ratio study). Of common interest in ratio studies are the level and uniformity of the appraisals or assessments. See also level of appraisal and level of assessment. Real property. See property. Regressivity. See assessment progressivity (regressivity). Regressivity index. See price-related differential. Reliability. In a sampling process, the extent to which the process yields consistent population estimates. Ratio studies typically are based on samples. Statistics derived from these samples may be more or less likely to reflect the true condition in the population depending on the reliability of the sample. Representativeness, sample size, and sample uniformity all contribute to reliability. Formally, reliability is measured by sampling error or the width of the confidence interval at a specific confidence level relative to the central tendency measure. Representative sample. A sample of observations from a larger population of observations, such that statistics calculated from the sample can be expected to represent the characteristics of the population being studied. Sale price. (1) The actual amount of money exchanged for a unit of goods or services, whether or not established in a free and open market. An indicator of market value. (2) Loosely used synonymously with "offering" or "asking price." Sale ratio. The ratio of an appraisal (or assessed) value to the sale price or adjusted sale price of a property. Sales chasing. Sales chasing is the practice of using the sale of a property to trigger a reappraisal of that property at or near the selling price. If sales with such appraisal adjustments are used in a ratio study, the practice causes invalid uniformity results and causes invalid appraisal level results, unless similar unsold parcels are reappraised by a method that produces an appraisal level for unsold properties equal to the appraisal level of sold properties. (2) By extension, any practice that causes the analyzed sample to misrepresent the assessment performance for the entire population as a result of acts by the assessor's office. A subtle, possibly in-advertent, variety of sales chasing occurs when the recorded property characteristics of sold properties are differentially changed relative to unsold properties. Then the application of a uniform valuation model to all properties results in the recently sold properties being more accurately appraised than the unsold ones. Sales ratio study. A ratio study that uses sales prices as proxies for market values. Sample. A
set of observations selected from a population. If the sample was randomly selected, basic concepts of probability may be applied. Sampling error. The error reflected in ratio study statistics that results solely from the fact that a sample of the population is used rather than a census of the population. Scatter diagram or scatter plot. A graphic means of depicting the relationship or correlation between two variables by plotting one variable on the horizontal axis and one variable on the vertical axis. Often in ratio studies it is informative to determine how ratios are related to other variables. A variable of interest is plotted on the horizontal axis and ratios are plotted on the vertical axis. Significance. A measure of the probability that an event is attributable to a relationship rather than merely the result of chance. Skewed. The quality of a frequency distribution that makes it asymmetrical. Distributions with longer tails on the right than on the left are said to be skewed to the right or to be positively skewed. Distributions with longer tails to the left are said to be skewed to the left or to be negatively skewed. Standard deviation. The statistic calculated from a set of numbers by subtracting the mean from each value and squaring the remainders, adding together all the squares, dividing by the size of the sample less one, and taking the square root of the result. When the data are normally distributed, the percentage of observations can be calculated within any number of standard deviations of the mean from normal probability tables. When the data are not normally distributed, the standard deviation is less meaningful and the analyst should proceed cautiously. Standard error. A measure of the precision of a measure of central tendency; the smaller the standard error, the more reliable the measure of central tendency. Standard errors are used in calculating a confidence interval about the arithmetic mean and the weighted mean. The standard error of the sample mean is the standard deviation divided by the square root of the sample size. Statistical accuracy. The closeness between the statistical estimate and the true (but unknown) population parameter value it was designed to measure. It is usually characterized in terms of error or the potential significance of error and can be decomposed into sampling error and nonsampling error components. Accuracy can be specified by the level of confidence selected for a statistical test. *See also* accuracy. Statistical precision. A reference to how closely the survey results from a sample can reproduce the results that would be obtained from the entire population (a complete census). The amount by which a sample statistic can vary from the true population parameter is due to error. Even if all the sample data are perfectly accurate, random (sampling) error affects statistical precision (measured by the standard error or standard deviation). The dispersion of ratios in the population and the sample size have a controlling influence over the precision of any statistical estimate. When the reliability of a statistical measure is being evaluated, narrower confidence intervals have greater precision. *See also* precision. Statistics. Numerical descriptive data calculated from a sample, for example, the median, mean, or COD. Statis-tics are used to estimate corresponding measures, termed parameters, for the population. Stratify. To divide, for purposes of analysis, a sample of observations into two or more subsets according to some criterion or set of criteria. Stratum, strata (pl.). A class or subset that results from stratification. Time-adjusted sale price. The price at which a property sold adjusted for the effects of price changes reflected in the market between the date of sale and the date of analysis. Trimmed mean. The arithmetic mean of a data set identified by the proportion of the sample that is trimmed from each end of the ordered array. For example, a 10 percent trimmed mean of a sample of size ten is the average of the eight observations remaining after the largest and smallest observations have been removed. Value. (1) The relationship between an object desired and a potential owner; the characteristics of scarcity, utility, desirability, and transferability must be present for value to exist. (2) Value may also be described as the present worth of future benefits arising from the ownership of real or personal property. (3) The estimate sought in a valuation. (4) Any number between positive infinity and negative infinity. Variable. An item of observation that can assume various values, for example, square feet, sales prices, or sales ratios. Variables are commonly described by using measures of central tendency and dispersion. Weighted mean; weighted average. An average in which each value is adjusted by a factor reflecting its relative importance in the whole before the values are summed and divided by their number. Weighted mean ratio. Sum of the appraised values divided by the sum of the sales prices (or independent estimates of market value), which weights each ratio in proportion to the sale price (or independent estimate of market value). #### References Appraisal Foundation. 2010–2011 (updated evry two tears). *Uniform standards of professional appraisal practice* (USPAP). Washington, DC: The Appraisal Foundation. Barnett, Vic, and Toby Lewis. 1994. Outliers in statistical data. New York: John Wiley & Sons, Inc. Clapp, John M. 1989. Sample size in ratio studies: How can "small" be made "large enough." *Property Tax Journal* 8(3):211–31. Cochran, William G. 1977. Sampling techniques, 3rd ed. New York: John Wiley & Sons, Inc. D'Agostino, Ralph B., and M. A. Stephens. 1986. Goodness-of-fit techniques. New York: Marcel Dekker. Dornfest, Alan S. 2004. State and provincial ratio study practices: 2003 survey results. *Journal of Property Tax Assessment & Administration* 1(1):31–70 Efron, Bradley, and Robert J. Tibshirani. 1993. An introduction to the bootstrap. New York: Chapman & Hall. Gloudemans, Robert J. 1999. Mass appraisal of real property. Chicago: International Association of Assessing Officers. Hart, Anna. 2001. Mann-Whitney test is not just a test of medians: Differences in spread can be important. *British Medical Journal* 2001(323):391-393. Hoaglin, David C., Fredrick Mosteller, and John W. Tukey. 1983. *Understanding robust and exploratory data analysis*. New York: John Wiley & Sons. Iglewicz, Boris, and David C. Hoaglin. 1993. How to detect and handle outliers. Milwaukee: ASQC Quality Press. International Association of Assessing Officers (IAAO). 2005. Standard on valuation of personal property. Kansas City, MO: International Association of Assessing Officers. International Association of Assessing Officers (IAAO). 2010. Standard on property tax policy. Kansas City, MO: International Association of Assessing Officers. International Association of Assessing Officers (IAAO). 2003. Standard on administration of monitoring and compliance responsibilities. Chicago: International Association of Assessing Officers. International Association of Assessing Officers (IAAO). 2003. Standard on automated valuation models. Chicago: International Association of Assessing Officers. International Association of Assessing Officers (IAAO). 2008. Standard on mass appraisal of real property. Kansas City, MO: International Association of Assessing Officers. International Association of Assessing Officers (IAAO). 1997 Glossary for property appraisal and assessment. Chicago: International Association of Assessing Officers. International Association of Assessing Officers (IAAO). 1990. Property appraisal and assessment administration. Chicago: International Association of Assessing Officers. International Association of Assessing Officers (IAAO). 1978. *Improving real property assessment: A reference manual*. Chicago: International Association of Assessing Officers. Knight, John R., Thomas J. Miceli, and C.F. Sirmans. 2000. Repair allowances, selling contracts and house prices. *Journal of Real Estate Research* 20(3): Lessler, Judith T., and William D. Kalsbeek. 1992. Nonsampling error in surveys. New York: John Wiley & Sons, Inc. Schultz, Ronald J. 1996. The law of the tool: A question of fairness. Assessment Journal 3(6):62-70. Sherrill, Koren, and Elbert Whorton, Jr. 1991. Sample size estimation techniques of the state equalization study of school districts in Texas. *Property Tax Journal* 10(1):125–39. Tomberlin, Nancy. 2001. Trimming outlier ratios in small samples. Assessment Journal 8(4):29-35. Tomberlin, Nancy. 2001. Sales validation from an oversight agency's perspective. Assessment Journal 8(6):29-35] Twark, Richard D., Raymond W. Everly, and Roger H. Downing. 1989. Some insights into understanding assess-ment uniformity measures: Regressivity and progressivity. *Property Tax Journal*. 8(3):183–91. Wooten, Tim. 2003. Asking the right questions is the key to a valid ratio study analysis. Assessment Journal 10(4):97-102. #### **Additional Resources** Committee on Sales Ratio Data, National Association of Tax Administrators. 1954. Report of the Committee. *Guide for assessment-sales ratio studies*. Chicago: Federation of Tax Administrators. Birch, John W. and Mark A. Saunderman. 2000. Optimal Trimming of appraisal-sales ratio studies. *Assessment Journal* 6(4):25-31. Birch, John W. and Mark A. Saunderman. 1997. Testing for outliers in sales and appraisal data. Assessment Journal 4(4):31-42. Bonett, Douglas G. and Edith Seier. 2006. Confidence intervals for a coefficient of dispersion in nonnormal distributions. *Biometrical Journal*. 48(1):144-148 Conover, W. J. 1980. Practical nonparametric statistics. New York: John Wiley & Sons. D'Agostino, Ralph B., Albert Belanger, and Ralph B. D'Agostino, Jr. 1990. A suggestion for using powerful and informative tests for normality. *The American Statistician* 44(4):316–21. Dornfest, Alan S, Alex Chizewsky,
and Pete Davis. 2004. Alternate methods of addressing ratio study outliers. *Journal of Property Tax Assessment and Administration* 1(4):5-14. Dornfest, Alan S. 1993. Mass appraisal performance evaluation: Strategies for painless implementation. Assessment Digest 15(1):2–11. Dornfest, Alan S. 2000. State and provincial ratio study practices: 1997 Survey results. Assessment Journal 4(6):23-67. Dornfest, Alan S. 1990. Perspectives on ratio studies: The rural state. Assessment Digest 12(3):17-21. Gloudemans, Robert J. 1999. Mass appraisal of real property. Chicago: International Association of Assessing Officers. Gloudemans, Robert J. 1990. Adjusting for time in computer-assisted mass appraisal. Property Tax Journal 9(1):83-99. Gloudemans, Robert J. 2000. An empirical evaluation of central tendency measures. Assessment Journal 7(1):21-27. Gloudemans, Robert J. 2001. Confidence intervals for the COD: Limitations and solutions. Assessment Journal 8(6):23-27. Groves, Robert M. 2004. Survey errors and survey costs. New York: John Wiley & Sons. International Association of Assessing Officers (IAAO). 2003. Standard on facilities, computers, equipment and supplies. Chicago: International Association of Assessing Officers. International Association of Assessing Officers (IAAO). 1977. Analyzing assessment equity. Chicago: International Association of Assessing Officers. Jacobs, Thomas. 1986. Assessment quality control. Assessment Digest 8(4):8–13. Benmamoun, Mamoun. 2006. Bootstrap confidence intervals and Gloudemans' COD tolerance test using SPSS and Stata. *Journal of Property Tax Assessment and Administration* 3(4):56-61. Mendenhall, William, James E. Reinmuth, and Robert J. Beaver. 1993. *Statistics for management and economics*, 7th ed. Belmont, CA: Duxbury Press. Neave, H. R., and P. L. Worthington. 1988. Distribution-free tests. London, England, and Boston, MA: Unwin Hyman. Neter, John, William Wasserman, and G. A. Whitmore. 1987. *Applied statistics*. 3rd ed. Boston, MA: Allyn and Bacon, Inc. Snedecor, George W., and William G. Cochran. 1967. Statistical methods, 6th ed. Ames Iowa: Iowa State University Press. Whorton, Elbert B. Jr. 2003. Should sales ratio studies be used for equalizing state funds for schools? *Assessment Journal*. 10(2):29–40.Wu, Ke-tsai, and Richard Baker Jr. 2000. Using Tukey line in support of PRD. *Assessment Journal* 7(5):41-50. Wu, Ke-tsai, and Richard Baker Jr. 2000. Evaluating as-sessment performance using a composite index: A tool for communication. *Assessment Journal* 7(1):29-33. Additional readings on ratio studies can be found at LibraryLink, IAAO's online catalog of resources, and http://www.iaao.org. Many Web sites offer good information on statistics. Because Web site addresses change frequently, they are not listed here. # **Appendix A. Sales Validation Guidelines** #### A.1 Sources of Sales Data The best sources of sales data are copies of deeds or real estate transfer affidavits containing the full consideration and other particulars of the sale. Assessing officers in jurisdictions without laws mandating full disclosure of sales data to assessing officials work under a severe handicap and should seek legislation that provides for such disclosure. - 1. Real estate transfer documents. These documents are (1) copies of deeds and land contracts, (2) copies of real estate transfer affidavits, and (3) closing statements. - 2. Buyers and sellers. Buyers and sellers of real property can be contacted directly to secure or confirm sales data. Means of contact include sales questionnaires, telephone interviews, and personal interviews. - 3. Third-party sources. Third-party sources include multiple listing agencies, real estate brokers and agencies, government and private fee appraisers, attorneys, appraisal organizations, and others. Of particular value are those individuals or agencies that publish lists of sales or provide sales in an electronic format. # A.2 Information Required The following data are needed to make any necessary adjustments to sales prices, compute sales ratios, and update ownership information. - 1. Full consideration involved. This is the total amount paid for the property, including the cash down payment and amounts financed. The sale price is the most essential item of information concerning the sale, and its accuracy must be carefully scrutinized. In many jurisdictions it is common practice in deeds of conveyance to state considerations in such terms as "one dollar plus other due and just consideration." These amounts are rarely the actual selling price and should be ignored in favor of information from the buyer and seller or other reliable source. - 2. Names of buyer and seller. This information permits the assessor to maintain a current record of the owners of all property in the jurisdiction. Transfer documents often refer to the buyer as the grantee or transferee and to the seller as the grantor or transferor. - 3. Addresses, phone numbers, and other contact information of buyer and seller or their legal designee. This information helps to identify more positively the parties to the sale. If the buyer will not reside at the property, the buyer's address may be needed for future correspondence. If the seller has established a new address, this information will aid the assessor in contacting the seller regarding the sale. - 4. Relationship of buyer and seller. It is important to know whether the buyer and seller are related individuals or corporate affiliates because such sales often do not reflect market value. - 5. Legal description, address, and parcel identifier. If each parcel is assigned a unique parcel identifier and if this number is noted on the document at the time it is recorded, then the assessor can locate the parcel in the files directly. If not, the legal description or street address is essential to locate the parcel. - 6. Type of transfer. It is crucial to identify whether or not a sale is an "arm's-length" transfer. Therefore, if the sources of sales data do not include copies of deeds, the type of deed should be specifically required. - 7. *Time on the market*. Sales that have been exposed to the open market too long, not long enough, or not at all may not represent market value. - 8. Interest transferred. The appraiser must identify whether or not the entire bundle of rights (fee simple) to the property has transferred. For example, in some transactions, only a life tenancy ("life estate") may be conveyed, or the seller may retain mineral or other rights to the property. Similarly, the sale price of a property encumbered by a long-term lease may not reflect the market value of the fee simple estate in the property. - 9. Type of financing. In analyzing the sale, it is helpful to know the amount of down payment; the type, remaining amount, and interest rates of notes secured by mortgages or deeds of trust assumed by the buyer; and the value of any stocks, bonds, notes, or other property passed to the seller. It is also important to know whether the sale conveys title to the property or that it is a land contract, in which title is not conveyed until some time in the future, typically several years. - 10. Personal property. A sales ratio study requires knowledge of the amount paid for the real property. The sale document ideally would note the type and value of any significant personal property items included in the transaction. - 11. Date of transfer. This is the date on which the sale was closed or completed. The date the deed or other transfer document was recorded can be used as a surrogate, provided there was no undue delay in the recording. If there has been a delay in recording, the date of the deed or transfer instrument should be used. - 12. Instrument number. This number, as well as the record or deed book and page, indicates where the deed is located in the official records and thus can be important in researching sales or leases and identifying duplication. The data noted above should be maintained in a separate data file or the sale history file component of a CAMA system. In addition, the file should include additional information useful for stratification and other analytical purposes. Sales data files should reflect the physical characteristics of the property when sold. If significant legal, physical, or economic changes have occurred between the sale date and the assessment date, the sale should not be used for ratio studies. (The sale may still be valid for mass appraisal modeling by matching the sale price against the characteristics that existed on the date of sale.) ### A.3 Confirmation of Sales #### **A.3.1 Importance of Confirmation** The usefulness of sales data is directly related to the completeness and accuracy of the data. Sales data should be routinely confirmed or verified by contacting buyers, sellers, or other knowledgeable participants in the transaction. In general, the fewer the sales in a stratum, the less common or more complex the type of property, and the more atypical the sale price, the greater the effort should be to confirm the particulars of the sale. With larger sample sizes, It may be sufficient to confirm single-family residential sales by audit or exception. #### **A.3.2 Methods of Confirmation** In general, the completeness and accuracy of sales data are best confirmed by requesting the particulars of a sale from parties to the sale. If a transfer document is not required, questionnaires after the sale can be used. A sales questionnaire, which requests the type of information listed in Section A.2, is one practical means of confirming sales. Telephone or personal interviews can be more comprehensive than mailed questionnaires. Forms with space to record the same types of information should be used for such interviews. Appendix G contains a model sale confirmation questionnaire (additional sample sales questionnaires and interview forms can be found in
Improving Real Property Assessment [IAAO 1978, 95–104]). Mailed sales questionnaires should be as concise as possible and should include - a postage-paid return envelope - official stationery - purpose of the questionnaire - contact person - authorized signature Forms designed for telephone interviews should include the name and phone number of the contact person. Such forms also should include the date and name of the person conducting the interview along with the number of attempts made to contact a party to the sale. ## A.4 Screening Sales Sales used in a ratio study must be screened to determine whether they reflect the market value of the real property transferred. Specific objectives of sales screening are as follows: - to ensure that sales prices reflect to the maximum extent possible only the market value of the real property transferred and not the value of personal property, financing, or leases - to ensure that sales that occurred only during the period of analysis are used - to ensure that sales are excluded from the ratio study only with good cause (e.g., when they compromise the validity of the study) Every arm's-length, open-market sale that appears to meet the conditions of a market value transaction should be included in the ratio study unless one of the following occurs: - Data for the sale are incomplete, unverifiable, or suspect. - The sale fails to pass one or more specific tests of acceptability. - A sufficiently representative sample of sales that occurred during the study period can be randomly selected to provide sufficiently reliable statistical measures. The sales reviewer should take the position that all sales are candidates as valid sales for the ratio study unless sufficient and compelling information can be documented to show otherwise. If sales are excluded without substantiation, the study may appear to be subjective. Reason codes can be established for invalid coles. No single set of sales screening rules or recommendations can be universally applicable for all uses of sales data or under all conditions. Sales screening guidelines and procedures should be consistent with the provisions of the value definition applicable to the jurisdiction. Appraisers must use their judgment, but should not be arbitrary. To help analysts make wise and uniform judgments, screening procedures should be in writing. Each sales analyst should be thoroughly familiar with these procedures as well as with underlying real estate principles (Tomberlin 2001). ## A.4.1 Sales Generally Invalid for Ratio Studies The following types of sales are often found to be invalid for ratio studies and can be automatically excluded unless a larger sample size is needed and further research is conducted to determine that sales are open-market transactions. - 1. Sales involving government agencies and public utilities. Such sales can involve an element of compulsion and often occur at prices higher than would otherwise be expected. - 2. Sales involving charitable, religious, or educational institutions. A sale to such an organization can involve an element of philanthropy, and a sale by such an organization can involve a nominal consideration or restrictive covenants. - 3. Sales involving financial institutions. A sale in which the lien holder is the buyer can be in lieu of a foreclosure or a judgment and the sale price can equal the loan balance only. - 4. Sales between relatives or corporate affiliates. Sales between relatives are usually non-open-market transactions and tend to occur at prices lower than would otherwise be expected. - 5. Sales settling an estate. A conveyance by an executor or trustee under powers granted in a will may not represent fair market value, particularly if the sale takes place soon after the will have been filed and admitted to probate in order to satisfy the decedent's debts or the wishes of an heir. - 6. Forced sales. Such sales include those resulting from a judicial order. The seller in such cases is usually a sheriff, receiver, or other court officer. - 7. Sales of doubtful title. Sales in which title is in doubt tend to be below market value. When a sale is made on other than a warranty deed, there is a question of whether the title is merchantable. Quit claim deeds and trustees' deeds are examples. ### A.4.2 Sales with Special Conditions Sales with special conditions can be open-market sales but must be verified thoroughly and used with caution in ratio studies. - 1. Trades. In a trade, the buyer gives the seller one or more items of real or personal property as all or part of the full consideration. If the sale is a pure trade with the seller receiving no money or securities, the sale should be excluded from analysis. If the sale involves both money and traded property, it may be possible to include the sale in the analysis if the value of the traded property is stipulated, can be estimated with accuracy, or is small in comparison to the total consideration. However, transactions involving trades should be excluded from the analysis whenever possible, particularly when the value of the traded property appears substantial. - 2. Partial interests. A sale involving the conveyance of less than the full interest in a property should be excluded from the analysis unless several sales of partial interests in a single property take place at the same time and the sum of the partial interests equals the fee-simple interest. Then the sum of the sales prices of the partial interests can sometimes be assumed to indicate the sale price of the total property. At other times, however, the purchase of such partial interests is analogous to plottage value in which a premium may have been paid. - 3. Land contracts. Land contracts and other installment purchase arrangements in which title is not transferred until the contract is fulfilled require careful analysis. Deeds in fulfillment of a land contract often reflect market conditions several years in the past, and such dated information should be excluded from analysis. Sales data from land contracts also can reflect the value of the financing arrangements. In such instances, if the transaction is recent, the sale price should be adjusted for financing (see section A.5.2). - 4. Incomplete or unbuilt common property. Sales of condominium units and of units in planned unit developments or vacation resorts often include an interest in common elements (for example, golf courses, clubhouses, or swimming pools) that may not exist or be usable on the date of sale or on the assessment date. Sales of such properties should be examined to determine whether prices might be influenced by promises to add or complete common elements at some later date. Sales whose prices are influenced by such promises should be excluded from the analysis, or the sales - prices should be adjusted to reflect only the value of the improvements or amenities in existence on the assessment date. - S. Auctions. In general, auction sales of real property tend to be at the lower end of the price spectrum. Auction sales that have been well-advertised and well-attended may be valid for consideration in ratio studies. The seller also must have the option to set a minimum bid on the property or the right of refusal on all bids (with reserve) in order for the sale to be considered valid. #### A.4.3 Multiple-Parcel Sales A multiple-parcel sale is a transaction involving more than one parcel of real property. These transactions present special considerations and should be researched and analyzed before being used in ratio studies. If the appraiser needs to include multiple-parcel sales, he or she should first determine whether the parcels are contiguous and whether the sale comprises a single economic unit or multiple economic units. Regardless of whether the parcels are contiguous, any multiple-parcel sale that also involves multiple economic units generally should not be used in ratio studies because of the likelihood that these sales include some plottage value or some discount for economies of scale, unless adequate adjustments for these factors can be made to the sale price. #### A.4.4 Acquisitions or Divestments by Large Property Owners Acquisitions or divestments by large corporations, pension funds, or real estate investment trusts (REITs) that involve multiple parcels typically should be rejected for ratio study purposes. ### A.4.5 IRS 1031 Exchanges Internal Revenue Service (IRS) Regulation 1031 stipulates that investment properties can be sold on a taxdeferred basis if certain requirements are met. Sale transactions that represent Section 1031 exchanges should be analyzed like any other commercial transaction and, absent conditions that would make the sale price unrepresentative of market value, should be regarded as valid. #### A.4.6 Internet Marketing Property that sells on the Internet and meets the criteria of being an open-market, arm's-length transaction should be included as a valid transaction in a ratio study. Brokerage and realty firms are using the Internet as an additional method to advertise and market their inventory of property. #### A.4.7 Inaccurate Sale Data Sale information should never be considered absolutely trustworthy. Jurisdictions can reduce the problem by requiring a sale verification questionnaire (see Appendix G). There should be statutory penalties for persons who falsify information. ### A.5 Adjustments to Sale Prices Sale prices used in ratio studies may need to be adjusted for financing, assumed long-term leases, personal property, gift programs, and date of sale. This is especially true for nonresidential properties. The real property tax is based on the market value of real property alone as of a specific date. This value may not be the same as investment value (that is, the monetary value of a property to a particular investor) and does not include the value of personal property or financing arrangements. If adjustments for more than one purpose
are to be made, they should be made in the following order: - 1. adjustments that convert the price to a better representation of the market value as of the date of sale (These include adjustments for financing and assumed long-term leases.) - 2. adjustments that develop or isolate the price paid for taxable real property (These include adjustments for personal property received by the buyer, property taken in trade by the seller, the combination of partial interest sales, and incomplete or unbuilt common property.) - 3. adjustments for differences in market value levels between the date of sale and the date of analysis Procedures for adjusting sales prices should be documented and the adjustment factors supported by market data. These requirements imply an ongoing study of local real estate prices, interest rates, and financing practices. Unsubstantiated or blanket adjustments can jeopardize the acceptance accorded a ratio study by making it appear subjective. ### A.5.1 Adjustments for Financing When financing reflects prevailing market practices and interest rates, sales prices require no adjustment for financing. Adjustments should be considered in the following instances: - 1. The seller and lender are the same party and financing is not at prevailing market rates. - 2. The buyer assumes an existing mortgage at a non-market interest rate. As with personal property, the preferred means of adjusting for financing is by individual parcel. In this instance and no. 1 above, downward adjustments are warranted when (1) the loan appears to be well secured and the contract interest rate is less than the market interest rate, or (2) the loan appears not to be well secured and the contract interest rate is lower than that required by the market for a loan of equal risk. The amount of adjustment can be computed by capitalizing the difference between monthly payments based on the required market interest rate and those based on the actual interest rate. Market analysis using paired sales (sales of similar properties, some with and some without conventional financing) or statistical techniques can correct for such factors. - 3. The seller pays "points" (a percentage of the loan amount). (Points paid by the borrower are part of the down payment and do not require adjustment.) When the seller pays points, the sale price should be adjusted downward by the value of the points. - 4. The property is sold under a gift program. Gift programs are a type of creative financing for qualified buyers by certain lending institutions that provide the buyer with additional monies to use as part of a down payment or for property improvements. This program is typically associated with low-value properties and can be difficult to discover without a validation questionnaire and/or telephone interview. The gift amount is added to the actual sale price of the property; however, the seller is never in receipt of the gift amount. This gift amount must be deducted from the actual sale price of the real estate prior to statistical analysis. Adjustments for financing require data on actual and market interest rates, the amount of the loan, and the term and amortization provisions of the loan. Obtaining and properly analyzing such data, as well as estimating the extent to which the market actually capitalizes non-market financing, are difficult and time-consuming and require specialized skills. #### A.5.2 Adjustments for Assumed Leases The sale price of a property encumbered by a long-term lease of at least three years should be adjusted as follows: - If the contract rent differs significantly from market rent, then the sales price should be adjusted by the difference between the present worth of the two income streams. - If the contract rent exceeds market rent, the present worth of the difference in the two income streams should be subtracted from the sale price. • If the contract rent is less than current market rent, the present worth of the difference in the two income streams should be added to the sale price. #### A.5.3 Adjustments for Personal Property Sales screening includes determining the contributory value of any significant personal property included in the sale. Personal property includes such tangibles as machinery, furniture, and inventories and such intangibles as franchises, licenses, and non-compete agreements. Ordinarily, it is not necessary to consider goodwill, going-concern value, business enterprise value, or the like, unless the value of these intangible assets has been itemized in a sales contract or a formal appraisal has been prepared by either party. It is necessary to decide whether each item included in the sale should be classified as real or personal property. (See *Standard on Valuation of Personal Property* [IAAO 2005], which provides guidance on classification of property as real or personal.) Sale prices should be adjusted by subtracting the contributory value of personal property received by the buyer. Ordinary window treatments, outdated models of freestanding appliances, and common-grade used furniture included with residential property do not usually influence the sale price of real property and do not require an adjustment unless the items were specifically broken out in the contract as personal property included in the sale price. If the value of personal property appears to be substantial (10 percent for residential, 25 percent for commercial), the sale should be excluded as a valid sale in statistical analysis unless the sample size is small. #### A.5.4 Adjustments for Time There should be a program to track changes in price levels over time and adjust sale prices for time as required. This step is an important component of a ratio study. Time adjustments must be based on market analysis and supported with appropriate documentation. Valid time-adjustment techniques are as follows: - tracking sales and appraisal ratios over time - including date-of-sale as a variable in regression or feedback models - analyzing re-sales - comparing per-unit values over time in homogeneous strata, such as a subdivision or condominium complex - isolating the effect of time through paired sales analysis - statistically supported time trend analysis studies These techniques are discussed in Gloudemans (1990; 1999), Property Appraisal and Assessment Administration (IAAO 1990, Appendix 5-3), and Improving Real Property Assessment (IAAO 1978, section 4.6). If sales prices have generally been rising, ratios for sales that occurred after the assessment date tend to understate the overall level of appraisal. Similarly, sales ratios for sales that occurred before the assessment date tend to overstate the level of appraisal. If prices are generally declining, an opposite pattern results. When tracking ratios over time (using the inverse ratio technique) for determining time adjustments, it is important that ratios for chased sales be excluded, since there is no correlation of such sales ratios with the date of sale. Changes in price levels should be monitored and time adjustments made by geographic area and type of property, because different segments of the market tend to change in value at different rates. Oversight agencies can make any appropriate time adjustments after making all other adjustments. #### A.5.5 Other Adjustments Adjustments to sales prices should not be made for real estate sales and brokerage commissions; closing costs, such as attorney's fees, transfer taxes, and title insurance; and current or delinquent property taxes. Exceptions to this general rule occur when the buyer agrees to pay real estate commissions and delinquent property taxes, in which case the amounts of the payments should be added to the sale price if not already included in the sale amount. Other exceptions occur when the seller agrees to pay expenses normally paid by the buyer. Such expenses include loan origination fees and repair allowances. Loan origination fees paid by the seller should be deducted from the sale price. Repair allowances should be deducted from the sales price only if the property was in an unrepaired state on the appraisal date, but sold at a higher price reflecting the value of the repairs. If the sale occurred before the appraisal date and the repairs were made prior to that date, no adjustment should be made (Knight, Miceli, and Sirmans 2000). ### A.5.6 Special Assessments Special assessments are used to finance capital improvements or provide services adjacent to the properties they directly benefit. Typically, the property owner is obligated to make annual payments of principal and interest to a local unit of government over a specified number of years. The sale price of a property encumbered by a special assessment can require adjustment if the current balance of the defrayed amount is significant. The sale price can be adjusted upward to account for this lien. If the effect on market value is significant and can be ascertained, an adjustment should be made # **Appendix B. Outlier Trimming Guidelines** #### **B.1 Identification of Ratio Outliers** It is first necessary to determine a procedure to identify outliers. Outlier identification based on the interquartile range (IQR) uses order statistics (see table B-1) and has been shown to be robust for a wide variety of distributions (Iglewicz and Hoaglin 1993; Barnett and Lewis 1994). The term outlier is often associated with ratios that fall outside 1.5 multiplied by the IQR. A factor of 3.0 X IQR often is chosen to identify extreme outliers. Other outlier identification procedures are found in statistical literature and can be used. Outlier identification and trimming must not be a part of the sales validation process and should follow this process. The example in table B-1 demonstrates the use of the 1.5 X IQR procedure to identify outlier ratios. The distribution of ratios often is skewed to the right; therefore, it may be preferable to apply appropriate
transformations to the ratios prior to applying the IQR method. For example, the use of logarithmic transformations tends to identify fewer high and more low ratios as outliers. #### **B.2 Scrutiny of Identified Outliers** The preferred method of handling an outlier ratio is to subject it to additional scrutiny to determine whether the sale is a non-market transaction or contains an error in fact. If an error can be corrected, for example, data entry, the property should be left in the sample. If the error cannot be corrected or inclusion of the identified outlier would reduce sample representativeness, the sale should be excluded. #### **B.3 Outlier Trimming** Once outliers have been identified and scrutinized and any errors resolved, the next step is to exclude those that may unduly influence calculated statistical measures. For this reason, it is acceptable to trim outliers identified by recognized procedures (for cautionary notes on trimming small samples, see Tomberlin [2001] and Hoaglin, Mosteller, and Tukey [1983]. An example of such trimming is found in Table B-2. However, trimming of outliers using arbitrary limits, for example, eliminating all ratios less than 50 percent or greater than 150 percent, tends to distort results and should not be employed. Detected outliers should be reported and can be treated in a variety of ways, including trimming (D'Agostino and Stephens 1986). If outliers are to be considered for removal, the analyst can select a procedure to trim all or just the extreme or influential outliers (see table B-2). If a trimming method has been used to reject ratios from the sample, this fact must be stated in the resulting statistical Table B-1. A Distribution-Free Method for Locating Outliers (The following procedure identifies outlier ratios that fall more than 1.5 times beyond the range of the middle 50 percent of the arrayed sample.) Locating trim boundaries Data set before trimming analysis. Outlier trimming is not mandatory; however, if outlier-trimming procedures are not used, sales with extreme or influential ratios must be thoroughly validated and determined to be highly trustworthy observations because they can play a pivotal role in the ratio study outcome. | Rank | Ratio (A | /S) | |-----------|----------|-------| | 1 | 0.61 | | | 2 | 0.75 | | | 3 | 0.76 | | | 4 | 0.85 | | | 5 | 0.86 | | | 6 | 0.90 | | | 7 | 0.92 | | | 8 | 0.94 | | | 9 | 1.01 | | | 10 | 1.05 | | | 11 | 1.17 | | | 12 | 1.36 | | | 13 | 1.85 | | | 14 | 2.50 | | | Median ra | tio | 0.935 | | COD | 32.271 | | Steps to locate trim boundaries 1. Locate the first quartile point Formula to locate the first quartile: $(0.25 \times number of ratios) + 0.25$ $(0.25 \times 14 \text{ ratios}) + 0.25 = 3.75$ 3.75 is three-quarters between the third and fourth ranked ratios. Ratio 3 = 0.762 Ratio 4 = 0.853 Three-quarters between = $(0.853 - 0.762) \times 0.75 = 0.068$ The first quartile point = 0.762 + 0.068 = 0.830 2. Locate the third quartile point Formula to locate the third quartile $(0.75 \times number of ratios) + 0.75$ $(0.75 \times 14 \text{ ratios}) + 0.75 = 11.25$ 11.25 is one-quarter between the eleventh and twelfth ranked ratios. Ratio 11 = 1.178 Ratio 12 = 1.367 One-quarter between = $(1.367 - 1.178) \times 0.25 = 0.047$ The third quartile point = 1.178 + 0.047 = 1.225 3. Compute the interquartile range The distance between the first and third quartile = interquartile range ${\bf r}$ 1.225 - 0.830 = 0.395 4. Establish the lower boundary Lower trim point = first quartile - (interquartile range \times 1.5 or 3.0) 0.830 - (0.395 \times 1.5) = 0.238, 5. Establish the upper boundary $Upper trim point = (interquartile \, range \, x \, 1.5 \, or \, 3.0) + third \, quartile \, (0.395 \, x \, 1.5) + 1.225 = 1.818$ Outliers identified: 1.850 2.500 Table B-2. Effects of Outlier Trimming Outliers identified in Table B-1 trimmed After 1.5x trimming Rank Ratio (A/S) 0.611 2 0.756 3 0.762 4 0.853 5 0.867 6 0.909 7 0.925 8 0.944 9 1.014 10 1.052 11 1.178 12 1.367 Median ratio 0.917 COD 15.649 # **B.4 Trimming Limitations** For some distributions, such as when the sample exhibits a high clustering around a specific ratio, the IQR outlier identification method is not appropriate. In such cases the IQR could be quite narrow, leading to the calculation of lower and upper boundaries for outliers and extremes that are quite close to the middle of the data. In such cases, ratios beyond those boundaries should not be automatically excluded, but instead reasonable judgment should be applied to exclude only true outliers or extremes. As one safeguard, analysts can refrain from automatically deleting any "outliers" or "extremes" inside the boundaries where 95 percent (two standard deviations) of the observations would be expected to lie, assuming a normal distribution of data. It is also appropriate to set maximum trimming limits. For small samples, no more than 10 percent (20 percent in the most extreme cases) of the ratios should be removed. For larger samples, this threshold can be lowered to 5 to 10 percent depending on the distribution of the ratios and the degree to which sales have been screened or validated. Trim limits should be developed in consideration of the extent of sales verification. In general, IQR-based outlier identification should be undertaken in instances in which sample sizes are sufficient to preclude the aberrant results that can be expected when this procedure is applied to small, highly variable samples. #### **B.5 Analytical Use of Identified Outliers** After identification, scrutiny, and correction of errors associated with outliers, the procedure can be run again to identify any remaining apparent outliers. If outlier ratios tend to be concentrated in certain areas or other subsets of the sample, they can point directly to systematic errors in the appraisal process and should be stratified and reanalyzed if they are sufficiently representative. ## **B.6 Reporting Trimmed Outliers and Results** Ratio study reports or accompanying documentation should clearly state the basis for excluding outlier ratios. Statistics calculated from trimmed distributions, obviously, cannot be compared to those from untrimmed distributions or interpreted in the same way. # Appendix C. # **Median Confidence Interval Tables for Small Samples** For small samples, tables C-1 and C-2 demonstrate use of a formula based upon the binomial distribution (Clapp 1989) to develop the lower and upper median confidence interval estimates. R_j is the ratio in an array ranked from the lowest (i = 1) to the highest (sorted in ascending order). Each confidence interval boundary typically falls between two ratios in the array. The interpolation factor is multiplied by the ratio value and the two are added together to obtain a weighted average. This method should be used for small samples with up to 30 observations (see tables C-1 and C-2). For larger samples the method found in *Property Appraisal and Assessment Administration* (IAAO 1990, p 609) may be used. # Example Using data from table 1-4 (n =17 ratios) and a 95 percent confidence interval in table C-2: #### Lower bound: $[0.695 (Ratio_5) \times 0.9899] + [0.717 (Ratio_6) \times 0.0101] = 0.695$ #### **Upper bound:** $[0.933 (Ratio_{13}) \times 0.9899] + [0.895 (Ratio_{12}) \times 0.0101] = 0.933$ Therefore, the 95% median ratio confidence interval in table 1-4 is from .695 to .933. Table C-1. 90% Confidence Interval Table | n | Lower Bound | Upper Bound | |----
--|---| | 5 | .8800 x R ¹ + .1200 x | $.8800 \times R^5 + .1200 \times R_4$ | | 6 | .6333 x R ¹ + .3667 x | .6333 x R ⁶ + .3667 x R₅ | | 7 | .2286 x R ¹ + .7714 x | $.2286 \times R^7 + .7714 \times R_6$ | | 8 | $.8643 \times R^2 + .1357 \times$ | $.8643 \times R^7 + .1357 \times R_6$ | | 9 | $.5667 \times R^2 + .4333 \times$ | | | 10 | $.1067 \times R^2 + .8933 \times$ | | | 11 | | .7855 x R ⁹ + .2145 x R ₈ | | 12 | $.4282 \times R^3 + .5718 \times$ | | | 13 | $.9558 \times R^4 + .0442 \times$ | | | 14 | $.6511 \times R^4 + .3489 \times$ | .6511 x R ¹¹ + .3489 x | | 15 | $.2217 \times R^4 + .7783 \times$ | $.2217 \times R^{12} + .7783 \times$ | | 16 | $.8261 \times R^5 + .1739 \times$ | .8261 x R ¹² + .1739 x | | 17 | .4603 x R ⁵ + .5397 x | $.4603 \times R^{13} + .5397 \times$ | | 18 | .9735 x R ⁶ + .0265 x | .9735 x R ¹³ + .0265 x | | 19 | $.6480 \times R^6 + .3520 $ | $.6480 \times R^{14} + .3520 \times$ | | 20 | $.2072 \times R^6 + .7928 \times$ | .2072 x R ¹⁵ + .7928 x | | 21 | $.8084 \times R^7 + .1952 \times$ | .8084 x R ¹⁵ + .1952 x | | 22 | $.4156 \times R^7 + .5844 \times$ | .4156 x R ¹⁶ + .5844 x | | 23 | $.9413 \times R^8 + .0587 $ | .9413 x R ¹⁶ + .0587 x | | 24 | .5884 x R ⁸ + .4116 x | $.5884 \times R^{17} + .4116 \times$ | | 25 | .1203 x R ⁸ + .8797 x | .1203 x R ¹⁸ + .8797 x | | 26 | .7371 x R ⁹ + .2629 x | .7371 x R ¹⁸ + .2629 x | | 27 | $.3161 \times R^9 + .6839 \times$ | .3161 x R ¹⁹ + .6839 x | | 28 | .8687 x R ¹⁰ + .1313 x | .8687 x R ¹⁹ + .1313 x | | 29 | $.4831 \times R^{10} + .5169 \times$ | $.4831 \times R^{20} + .5169 \times$ | | 30 | .9876 x R ¹¹ + .0124 x | $.9876 \times R^{20} + .0124 \times$ | From Table 1-4. Demonstration Ratio Study Report | Rank | Parcel # | Appraised | Sale price* | Ratio | |------|----------|-----------|-------------|-------| | | | value | | | | 1 | 9 | \$87,200 | 138,720 | 0.629 | | 2 | 10 | 38,240 | 59,700 | 0.641 | | 3 | 11 | 96,320 | 146,400 | 0.658 | | 4 | 12 | 68,610 | 99,000 | 0.693 | | 5 | 13 | 32,960 | 47,400 | 0.695 | | 6 | 14 | 50,560 | 70,500 | 0.717 | | 7 | 15 | 61,360 | 78,000 | 0.787 | | 8 | 16 | 47,360 | 60,000 | 0.789 | | 9 | 17 | 56,580 | 69,000 | 0.820 | | 10 | 18 | 47,040 | 55,500 | 0.848 | | 11 | 19 | 136,000 | 154,500 | 0.880 | | 12 | 20 | 98,000 | 109,500 | 0.895 | | 13 | 21 | 56,000 | 60,000 | 0.933 | | 14 | 22 | 159,100 | 168,000 | 0.947 | | 15 | 23 | 128,000 | 124,500 | 1.028 | | 16 | 24 | 132,000 | 127,500 | 1.035 | | 17 | 25 | 160,000 | 150,000 | 1.067 | ate: 0/0/00. No outlier trimming Table C-2. 95% Confidence Interval Table | n | Lower Bound | Upper Bound | | | | |----|-----------------------------------|--|--|--|--| | 6 | $.9000 \times R^1 + .1000 \times$ | $.9000 \times R^6 + .1000 \times R_5$ | | | | | 7 | $.6857 \times R^1 + .3143 \times$ | $.6857 \times R^7 + .3143 \times R_6$ | | | | | 8 | $.3250 \times R1 + .6750 \times$ | $.3250 \times R^8 + .6750 \times R_7$ | | | | | 9 | $.9222 \times R^2 + .0778 \times$ | .9222 x R ⁸ + .0778 x R ₇ | | | | | 10 | $.6756 \times R^2 + .3244 \times$ | .6756 x R ⁹ + .3244 x R ₈ | | | | | 11 | $.2873 \times R^2 + .7127 \times$ | .2873 x R ¹⁰ + .7127 x R ₉ | | | | | 12 | $.8936 \times R^3 + .1064 \times$ | .8936 x R ¹⁰ + .1064 x R ₉ | | | | | 13 | $.6056 \times R^3 + .3944 \times$ | | | | | | 14 | $.1659 \times R^3 + .8341 \times$ | .1659 x R ¹² + .8341 x | | | | | 15 | $.8218 \times R^4 + .1782 \times$ | .8218 x R ¹² + .1782 x | | | | | 16 | $.4827 \times R^4 + .5173 \times$ | .4827 x R ¹³ + .5173 x | | | | | 17 | $.9899 \times R^5 + .0101 \times$ | $.9899 \times R^{13} + .0101 \times$ | | | | | 18 | $.7076 \times R^5 + .2924 \times$ | .7076 x R ¹⁴ + .2924 x | | | | | 19 | $.3059 \times R^5 + .6941 \times$ | .3059 x R ¹⁵ + .6941 x | | | | | 20 | $.8835 \times R^6 + .1165 \times$ | .8835 x R ¹⁵ + .1165 x | | | | | 21 | $.5479 \times R^6 + .4521 \times$ | .5479 x R ¹⁶ + .4521 x | | | | | 22 | $.0697 \times R^6 + .9303 \times$ | .0697 x R ¹⁷ + .9303 x | | | | | 23 | $.7381 \times R^7 + .2619 \times$ | .7381 x R ¹⁷ + .2619 x | | | | | 24 | $.3373 \times R^7 + .6627 \times$ | .3373 x R ¹⁸ + .6627 x | | | | | 25 | $.8958 \times R^8 + .1042 \times$ | .8958 x R ¹⁸ + .1042 x | | | | | 26 | $.5481 \times R^8 + .4519 \times$ | .5481 x R ¹⁹ + .4519 x | | | | | 27 | .0677 x R8 + .9323 x | .0677 x R20 + .9323 x | | | | | 28 | .7221 x R9 + .2779 x | .7221 x R20 + .2779 x | | | | | 29 | .3063 x R9 + .6937 x | .3063 x R21 + .6937 x | | | | | 30 | .8709 x R10 + .1291 x | .8709 x R21 + .1291 x | | | | | | | | | | | ^{*} or adjusted sale price # **Appendix D. Sales Chasing Detection Techniques** As long as sold and unsold parcels are appraised in the same manner and the data describing them are coded consistently, statistics calculated in a sales ratio study can be used to infer appraisal performance for unsold parcels. However, if parcels that sell are selectively reappraised or recoded based on their sale prices or some other criterion (such as listing price) and if such parcels are in the ratio study, sales ratio study uniformity inferences will not be accurate (appraisals will appear more uniform than they are). In this situation, measures of appraisal level also will be unsupportable unless similar unsold parcels were appraised by a model that produces the same overall percentage of market value (appraisal level) as on the parcels that sold based on consistently coded descriptive and locational data. Assessors and oversight agencies do not need to employ all the detection techniques described in this appendix, but should consider implementing at least one procedure. In some cases, access to assessment information for all properties is necessary to perform the suggested techniques. Agencies that do not have access to these data are at a disadvantage, but should still implement detection techniques, such as those described in sections D.3 and D.4, which do not require such comprehensive assessment information. ## **D.1 Comparison of Average Value Changes** If sold and unsold properties within a specified group are appraised in the same way, their appraised values should reflect similar average percentage changes from year to year. Accordingly, changes in appraised values for sold and unsold parcels can be compared to determine whether sold parcels have been selectively appraised. Alternatively, the average percent change in value for sample parcels can be compared to that for the population of properties within a specified group or stratum for an indication of selective reappraisal. For example, if sold parcels are considered representative of a stratum and appraised values increased an average of 10 percent while appraised values for unsold parcels in the same stratum increased an average of only 2 percent, "sales chasing" is a likely conclusion. At a more sophisticated level, the distribution of value changes for sold and unsold parcels can be compared, or statistical tests can be used to determine whether the distributions are different at a given level of confidence. Statistical significance in the absence of practical significance may be moot. In large samples, small differences in the
magnitude of assessed value changes on sold and unsold parcels can be proven to be statistically significant, yet the actual differences may be slight. Therefore, it is prudent to establish some reasonable tolerance, such as 3 percentage points (e.g., a change of 6 percent for sold properties and 3 percent for unsold properties), before concluding that a meaningful problem exists. Such tolerance applies to other detection techniques discussed below. ## **D.2 Comparison of Average Unit Values** If sold and unsold parcels are appraised equally, average unit values (for example, value per square foot) should be similar. An appropriate test (Mann Whitney or t-test) can be conducted to determine whether differences are significant. #### D.3 Split Sample Technique In this technique, two ratio studies are performed, one using sales that occurred before the appraisal date and one using sales after the appraisal date, both adjusted for date of sale as appropriate. Except for random sampling error and any error in time adjustments, results of the two studies should be similar. Sales chasing is indicated if the results of the first study are consistently better than those from the second. In such a case, the second study is still valid; the first study should be rejected. ## D.4 Comparison of Observed versus Expected Distribution of Ratios Assuming the ratio studies are based on sales that have been properly adjusted for time and other factors, a strong indication of the likelihood of "sales chasing" can be obtained by computing the proportion of ratios that would be expected to fall within a particular narrow range of the mean given the lowest likely standard deviation (although this depends somewhat on the assumption of a normal distribution). For example, with a standard deviation of 5 percent given a normal distribution, about 32 percent of the ratios would be expected to fall within ± 2 percent of the mean (for example, between 98 and 102 percent, given a mean of 100 percent). Except in highly constrained or well-behaved real estate markets, many appraisers consider such a low standard deviation, corresponding approximately to a COD of 4 percent, to be unachievable. Regardless of the distribution of the ratios, the likelihood is extremely low that there would be a sufficiently representative sample with more than this proportion of ratios in such a narrow range. If such is the case, "sales chasing" is a likely conclusion. Sometimes other processes through which adjustments to assessments on selling parcels are more pronounced than on the population as a whole mimic the effect of sales chasing, such as more intensive reviews of sales than non-sales. Regardless of the practice, the representativeness of the ratio study is called into question and additional tests should be instituted. Although samples may not be normally distributed, in which case equivalently precise proportions of expected ratios around the median cannot be determined, the 32 percent concentration is very conservative. Finding such a high concentration of ratios around any measure of central tendency is a strong indicator of sales chasing or of a non-representative ratio study. In addition, when the distribution of ratios is bimodal or multimodal, similar significant concentrations of ratios around these modes can indicate selective reappraisal or sales chasing. Table D-1 demonstrates the conservative nature of the 32 percent concentration. If the minimum achievable COD is, in fact, higher than 4 percent for the strata or property class being analyzed, then even lower concentrations could indicate sales chasing, and previously discussed investigative procedures should be instituted. One disadvantage to this procedure is that it can be misleading when applied to small samples. Therefore the method should not be employed for sample sizes less than 30. Even when critical proportions of ratios shown in table D-1 are exceeded, further investigation should be conducted before concluding that sales chasing has occurred. ## **D.5 Mass Appraisal Techniques** Provided sales are sufficient in number, oversight agencies can develop mass appraisal models to apply to a random sample of unsold properties or to the population of properties that are represented by the sold properties. An independent multiple regression or other automated calibration techniques can be used to develop the models. An appraisal ratio study is then conducted for the unsold parcels by using values predicted by the independent models as indicators of market values. This approach has the following advantages: - It is objective and rooted in the market. - The models can be reviewed for sufficient reliability before being applied to the unsold parcels. - The technique yields measures of central tendency, which can be compared against those produced by the sales ratio study and tested for compliance with standards for the level of appraisal. - The technique takes the form of an appraisal ratio study but avoids the time and expense of single-property appraisals. Reliability of this method depends on the accuracy and independence of the mass appraisal models used to generate the value estimates. The models must be consistent with appraisal theory and reviewed for sufficient reliability by examining goodness-of-fit statistics. The models should be independent of those used for assessment purposes. Table D-1. Example of critical ratio concentrations indicative of sales chasing or similar practices | | Standard | | | | | Expected proportion | |----------|------------------|-----------|---------------|---------------|---------------|----------------------| | Minimum | deviation | Critical | z score based | Expected | Expected | between 0.98 and | | achievab | assuming normal | proportio | on ± 2% | proportion of | proportion of | 1.02 (within ± 2% of | | le COD | distribution and | n of | range | ratios below | ratios below | central tendency) | | 1.6% | 2.00% | 69 | 1.0000 | 0.1587 | 0.8413 | 0.6826 | | 4.0% | 5.00% | 32 | 0.4000 | 0.3446 | 0.6554 | 0.3108 | | 5.0% | 6.25% | 26 | 0.3200 | 0.3745 | 0.6255 | 0.2510 | | 6.0% | 7.50% | 22 | 0.2667 | 0.3949 | 0.6051 | 0.2102 | | 7.0% | 8.75% | 19 | 0.2286 | 0.4110 | 0.5896 | 0.1801 | | 8.0% | 10.00% | 16 | 0.2000 | 0.4207 | 0.5793 | 0.1586 | | 10.0% | 12.50% | 13 | 0.1600 | 0.4364 | 0.5636 | 0.1272 | | 12.0% | 15.00% | 11 | 0.1333 | 0.4467 | 0.5530 | 0.1063 | | 14.0% | 17.50% | 10 | 0.1143 | 0.4545 | 0.5455 | 0.0910 | | 16.0% | 20.00% | 8 | 0.1000 | 0.4602 | 0.5398 | 0.0796 | ^{*} Given the assumption that the COD shown represents the minimum achievable COD for the property type, class, or strata being analyzed with the ratio study, sales chasing (or a similar distortive procedure) is very likely if the concentration of ratios with \pm 2% of a measure of central tendency, such as the median or a mode, or 100%, equals or exceeds this value. This proportion is based on values of the standard normal distribution function and assumption that sample size is greater than 30. The critical number equals the integer immediately exceeding the expected proportion. # **Appendix E. Alternative Uses for Ratio Study Statistics** In addition to the use of statistical measures to determine underlying assessment level and uniformity, comparisons between measures can provide useful information about sample representativeness, the distribution of the ratios, and the influence of outliers. For example, by comparing the mean and weighted mean, even without determining the PRD, the analyst should be aware that a large difference between these two measures indicates probable influence of atypical ratios on high-priced properties. This in turn could mean that outliers are still present in the sample and that the sample is not representative. Alternatively, it could indicate systematic appraisal error in the appraisal of properties within a particular price range. The geometric mean-to-mean relationship can provide similar information, especially about the presence of very low ratios, which have a greater influence on the geometric mean. The relationship between the COD and COV can provide similar additional guidance. This standard chooses the COD as the primary recommended measure of uniformity. This choice reflects the expectation of non-normal distributions of ratios. Despite this consideration, it is useful to recognize that, in a normal distribution, the COV is approximately 1.25 times the COD. When the COV/COD ratio exceeds 1.25, the likely cause is a small number of very high ratios, which may again be non-representative. It is incumbent on the analyst to review the ratio study sample to attempt to provide a representative sample. Comparisons of statistics, such as those given in this appendix, provide an additional tool to help the analyst in this regard. # **Appendix F. Legal Aspects of Ratio Studies** Property taxation is governed by federal, state, and provincial constitutions, statutes, and administrative rules or regulations, many of which require uniform treatment of property taxpayers. Ratio studies play an important role in judging whether uniformity requirements are met. Relevant Canadian Federal statutes based on the Constitution Acts of 1867–1975 provide that municipal councils cannot discriminate between taxpayers of the same class within municipalities. Relevant United States federal provisions include the Bill of Rights, the commerce clause of the United States Constitution, the Fourteenth Amendment, and the Tax Injunction Act (28 U.S.C. § 1341). Together they guarantee basic protections and due process while still granting states the authority to classify property and grant reasonable exemptions. Many constitutions have clauses that require uniformity in the assessment and taxation of property, although some jurisdictions, either by constitution or statute, permit certain differences between classes. Ratio studies provide a gauge of whether
uniformity requirements are being met. A key U.S. federal statute relating to ratio studies is the U.S. Railroad Revitalization and Regulatory Reform Act ("4-R Act") of 1976 (49 U.S.C. § 11501). The 4-R Act requires that rail transportation property be assessed for tax purposes at no more than 105 percent of the assessment level of other commercial and industrial property in the same taxing jurisdiction. Similar federal statutes relate to air transportation property, motor carriers, and bus lines (49 U.S.C. §§14502 and 40116). The 4-R Act provides that ratio studies be used to measure alleged discrimination. In such cases, as in any ratio study, the purpose of the study must be clearly defined and the study must be conducted so that it accurately evaluates the issues at hand. Important issues in ratio studies conducted pursuant to the 4-R Act include the proper definition of "other" commercial and industrial property, screening and adjustments to sales data, proper measures of the level of appraisal, and the combining and weighting of centrally valued and locally assessed properties. # Assessment Standards of the International Association of Assessing Officers JANUARY 2010 Standard on Ratio Studies JANUARY 2010 Standard on Property Tax Policy JANUARY 2010 Standard on Public Relations JANUARY 2008 Standard on Mass Appraisal of Real Property DECEMBER 2005 Standard on Valuation of Personal Property **August 2004** Guide to Assessment Administration Standards **August 2004** Standard on Manual Cadastral Maps and Parcel Identifiers September 2003 Standard on Automated Valuation Models Jury 2003 Standard on Administration of Monitoring and Compliance Responsibilities JANUARY 2009 Standard on Digital Cadastral Maps and Parcel Identifiers January 2003 Standard on Facilities, Computers, Equipment, and Supplies DECEMBER 2008 Standard on Contracting for Assessment Services **J**ULY 2001 Standard on Assessment Appeal **J**ULY 2001 Standard on Valuation of Property Affected by Environmental Contamination DECEMBER 2000 Standard on Professional Development #### Knowing your market is critical! Davidson & Associates will provide you the most current data available for: Forsyth County Davie County Randolph County Stokes County Yadkin County, North Carolina Click Here for Current Market Reports! To place your appraisal order online, click here. Or feel free to call us at (336) 765-5502 if you have any questions. For years, mortgage lenders and consumers have called upon Davidson & Associates to provide high-quality appraisals on all types of homes in Triad area of North Carolina. By continuously keeping up with local real estate trends and staying current on valuation techniques through accredited courses, we've been consistently able to deliver reliable home valuations for people just like you. ## Piedmont Triad Residential Real Estate Market Report #### Randolph County, North Carolina Prepared by Brian S. Davidson Davidson & Associates Real Estate Appraising and Consulting 4934 Stonington Road Winston-Salem, North Carolina 27103 www.DavidsonPropertyServices.com Phone: (336) 765-5502 Readers are referred to the Piedmont Triad Real Estate Market Report for Introduction and Methodology at www.DavidsonPropertyServices.com/MarketReports. Information contained in this report is believed to be accurate, but is not guaranteed. Data may changed from previous reports as data in the Triad Multiple Listing Service is updated. Only data contained in the Triad MLS is contained in this report even though there are other Multiple Listing Services in the area. Davidson and Associates Real Estate Appraisal and Consulting www.DavidsonPropertyServices.com 12/13/2012 Page 1 of 8 Davidson and Associates Real Estate Appraisal and Consulting www.DavidsonPropertyServices.com 12/13/2012 Page 2 of 8 Davidson and Associates Real Estate Appraisal and Consulting www.DavidsonPropertyServices.com 12/13/2012 Page 3 of 8 Davidson and Associates Real Estate Appraisal and Consulting www.DavidsonPropertyServices.com 12/13/2012 Page 4 of 8 Davidson and Associates Real Estate Appraisal and Consulting www.DavidsonPropertyServices.com 12/13/2012 Page 5 of 8 Davidson and Associates Real Estate Appraisal and Consulting www.DavidsonPropertyServices.com 12/13/2012 Page 6 of 8 Davidson and Associates Real Estate Appraisal and Consulting www.DavidsonPropertyServices.com 12/13/2012 Davidson and Associates Real Estate Appraisal and Consulting www.DavidsonPropertyServices.com 12/13/2012 Page 8 of 8 ## REFERENCES/RESOURCES Marshall and Swift Valuation Service North Carolina Department of Revenue-Local Government Division North Carolina Machinery Act International Association of Assessing Officers The Appraisal Foundation Craftsman 2012 National Building Cost Manual Asheboro/Randolph Board of Realtors Triad Multiple Listing Service Local Builders/Contractors Davidson & Associates Residential Real Estate Reports Henderson County Tax Office Emmett Curl, Pearson's Appraisal Service